Skip to main content Accessibility help
×
×
Home

Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry

  • Anthony A. Arendt (a1), Scott B. Luthcke (a2), Christopher F. Larsen (a1), Waleed Abdalati (a3), William B. Krabill (a4) and Matthew J. Beedle (a5)...

Abstract

We acquired center-line surface elevations from glaciers in the St Elias Mountains of Alaska/northwestern Canada using aircraft laser altimetry during 2000–05, and compared these with repeat measurements acquired in 2007. The resulting elevation changes were used to estimate the mass balance of 32 900 km2 of glaciers in the St Elias Mountains during September 2003 to August 2007, yielding a value of −21.2 ± 3.8 Gt a−1, equivalent to an area-averaged mass balance of −0.64 ± 0.12 m a−1 water equivalent (w.e.). High-resolution (2 arc-degrees spatial and 10 day temporal) Gravity Recovery and Climate Experiment (GRACE) mass-balance estimates during this time period were scaled to glaciers of the St Elias Mountains, yielding a value of −20.6 ± 3.0 Gt a−1, or an area-averaged mass balance of −0.63 ± 0.09 m a−1 w.e. The difference in balance estimates (altimetry minus GRACE) was −0.6 ± 4.8 Gt a−1, well within the estimated errors. Differences likely resulted from uncertainties in subgrid sampling of the GRACE mass concentration (mascon) solutions, and from errors in assigning an appropriate near-surface density in the altimetry estimates. The good correspondence between GRACE and aircraft altimetry data suggests that high-resolution GRACE mascon solutions can be used to accurately assess mass-balance trends of mountain glacier regions that are undergoing large changes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry
      Available formats
      ×

Copyright

References

Hide All
Abdalati, W. and 9 others. 2004. Elevation changes of ice caps in the Canadian Arctic Archipelago. J. Geophys. Res., 109(F4), F04007. (10.1029/2003JF000045.)
Aðalgeirsdóttir, G., Echelmeyer, K.A. and Harrison, W.D.. 1998. Elevation and volume changes on the Harding Icefield, Alaska. J. Glaciol., 44(148), 570582.
Arendt, A.A., Echelmeyer, K.A., Harrison, W.D., Lingle, C.S. and Valentine, V.B.. 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386.
Arendt, A. and 7 others. 2006. Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. J. Geophys. Res., 111(F3), F03019. (10.1029/2005JF000436.)
Arthern, R.J. and Wingham, D.J.. 1998. The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climatic Change, 40(4), 605624.
Bader, H. 1954. Sorge’s Law of densification of snow on high polar glaciers. J. Glaciol., 2(15), 319323.
Beedle, M.J. and 7 others. 2008. Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska. Cryosphere, 2(1), 3351
Berthier, E., Arnaud, Y., Baratoux, D., Vincent, C. and Rémy, F.. 2004. Recent rapid thinning of the Mer de Glace glacier derived from satellite optical images. Geophys. Res. Lett., 31(17), L17401. (10.1029/2004GL020706.)
Burgess, D.O., Sharp, M.J., Mair, D.W.F., Dowdeswell, J.A. and Benham, T.J.. 2005. Flow dynamics and iceberg calving rates of the Devon Ice Cap, Nuvavut, Canada. J. Glaciol., 51(173), 219230.
Chen, J.L., Tapley, B.D. and Wilson, C.R.. 2006. Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet. Sci. Lett., 248(1–2), 368378.
Chen, J.L., Wilson, C.R., Tapley, B.D., Blankenship, D.D. and Ivins, E.R.. 2007. Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys. Res. Lett., 43(22), L22501. (10.1029/2007GL031871.)
Echelmeyer, K.A. and 8 others. 1996. Airborne surface profiling of glaciers: a case-study in Alaska. J. Glaciol., 42(142), 538547.
Krabill, W.B., Thomas, R.H., Martin, C.F., Swift, R.N. and Frederick, E.B.. 1995. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing, 16(7), 12111222.
Krabill, W. and 8 others. 1999. Rapid thinning of parts of the southern Greenland ice sheet. Science, 283(5407), 15221524.
Krabill, W.B. and 9 others. 2000. Greenland ice sheet: high-elevation balance and peripheral thinning. Science, 289(5478), 428430.
Krabill, W.B. and 8 others. 2002. Aircraft laser altimetry measurements of changes of the Greenland ice sheet: technique and accuracy assessment. J. Geodyn., 34(3–4), 357376.
Larsen, C.F., Motyka, R.J., Freymueller, J.T., Echelmeyer, K.A. and Ivins, E.R.. 2005. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreats. Earth Planet. Sci. Lett., 237 (3–4), 548560.
Larsen, C.F., Motyka, R.J., Arendt, A.A., Echelmeyer, K.A. and Geissler, P.E.. 2007. Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise. J. Geophys. Res., 112(F1), F01007. (10.1029/2006JF000586.)
Lee, J. and Lund, R.. 2004. Revisiting simple linear regression with autocorrelated errors. Biometrika, 91(1), 240245.
Lingle, C.S., Post, A., Herzfeld, U.C., Molnia, B.F., Krimmel, R.M. and Roush, J.J.. 1993. Correspondence. Bering Glacier surge and iceberg-calving mechanism at Vitus Lake, Alaska, USA. J. Glaciol., 39(133), 722727.
Luthcke, S., Arendt, A., Rowlands, D., Larsen, C. and McCarthy, J.. Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54(188), 767777.
Luthcke, S.B., Rowlands, D.D., Lemoine, F.G., Klosko, S.M., Chinn, D. and McCarthy, J.J.. 2006a. Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys. Res. Lett., 33(2), L02402. (10.1029/2005GL024846.)
Luthcke, S. B. and 8 others. 2006b. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 12861289.
Luthcke, S. and 8 others. 2007. An assessment of high latitude land ice mass flux estimates derived from GRACE. Eos, 88(52), Fall Meet. Suppl., Abstract G33C-05.
Meehl, G.A. and 12 others. 2007. Global climate projections. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press.
Meier, M.F. 1984. Contribution of small glaciers to global sea level. Science, 226(4681), 14181421.
Meier, M.F. and Post, A.. 1987. Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058.
Meier, M.F. and 7 others. 2007. Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067.
Motyka, R.J. and Truffer, M.. 2007. Hubbard Glacier, Alaska: 2002 closure of Russell Fjord and implications for future dams. J. Geophys. Res., 112(F2), F02004. (10.1029/2006JF000475.)
Muskett, R.R., Lingle, C.S., Tangborn, W.V. and Rabus, B.T.. 2003. Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska. Geophys. Res. Lett., 30(16), 1857. (10.1029/2003GL017707.)
Nolan, M., Arendt, A., Rabus, B. and Hinzman, L.. 2005. Volume change of McCall Glacier, Arctic Alaska, USA, 1956–2003. Ann. Glaciol., 42, 409416.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Rabus, B.T. and Echelmeyer, K.A.. 1998. The mass balance of McCall Glacier, Brooks Range, Alaska, USA; its regional relevance and implications for climate change in the Arctic. J. Glaciol., 44(147), 333351.
Raup, B.H., Kieffer, H.H., Hare, T.M. and Kargel, J.S.. 2000. Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target. IEEE Trans. Geosci. Remote Sens., 38(2), 11051112.
Rignot, E., Rivera, A. and Casassa, G.. 2003. Contribution of the Patagonian icefields of South America to sea level rise. Science, 302(5644), 434437.
Rodell, M. and 13 others. 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc., 85(3), 381394.
Rowlands, D.D. and 7 others. 2005. Resolving mass flux at high spatial and temporal resolution using GRACE inter-satellite measurements. Geophys. Res. Lett., 32(4), L04310. (10.1029/2004GL021908.)
Sapiano, J.J., Harrison, W.D. and Echelmeyer, K.A.. 1998. Elevation, volume and terminus changes of nine glaciers in North America. J. Glaciol., 44(146), 119135.
Sauber, J., Molnia, B., Carabajal, C., Luthcke, S. and Muskett, R.. 2005. Ice elevations and surface change on the Malaspina Glacier, Alaska. Geophys. Res. Lett., 32(23), L23S01. (10.1029/2005GL023943.)
Sharp, R.P. 1951. Features of the firn on upper Seward Glacier, St. Elias Mountains, Canada. J. Geol., 59(6), 599621.
Tamisiea, M.E., Leuliette, E.W., Davis, J.L. and Mitrovica, J.X.. 2005. Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys. Res. Lett., 32(20), L20501. (10.1029/2005GL023961.)
Truffer, M., Harrison, W.D. and March, R.S.. 2005. Correspondence. Record negative glacier balances and low velocities during the 2004 heatwave in Alaska, USA: implications for the interpretation of observations by Zwally and others in Greenland. J. Glaciol., 51(175), 663664.
Velicogna, I. and Wahr, J.. 2005. Greenland mass balance from GRACE. Geophys. Res. Lett., 32(18), L18505. (10.1029/2005GL023955.)
Velicogna, I. and Wahr, J.. 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 17541756.
Zwally, H.J. and Li, J.. 2002. Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. J. Glaciol., 48(161), 199207.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed