Skip to main content Accessibility help

The variability of tidewater-glacier calving: Origin of event-size and interval distributions

  • Anne Chapuis (a1) and Tom Tetzlaff (a1) (a2)


Calving activity at the termini of tidewater glaciers produces a wide range of iceberg sizes at irregular intervals. We present calving-event data obtained from continuous observations of the termini of two tidewater glaciers on Svalbard, and show that the distributions of event sizes and inter-event intervals can be reproduced by a simple calving model, focusing on the mutual interplay between calving and the destabilization of the glacier terminus. The event-size distributions of both the field and the model data extend over several orders of magnitude and resemble power laws. The distributions of inter-event intervals are broad, but have a less pronounced tail. In the model, the width of the size distribution increases with the calving susceptibility of the glacier terminus, a parameter measuring the effect of calving on the stress in the local neighborhood of the calving region. Inter-event interval distributions, in contrast, are insensitive to the calving susceptibility. Above a critical susceptibility, small perturbations of the glacier result in ongoing self-sustained calving activity. The model suggests that the shape of the event-size distribution of a glacier is informative about its proximity to this transition point. Observations of rapid glacier retreats can be explained by supercritical self-sustained calving.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The variability of tidewater-glacier calving: Origin of event-size and interval distributions
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The variability of tidewater-glacier calving: Origin of event-size and interval distributions
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The variability of tidewater-glacier calving: Origin of event-size and interval distributions
      Available formats



Hide All
Amundson, JM and Truffer, M (2010) A unifying framework for iceberg-calving models. J. Glaciol., 56(199), 822830 (doi: 10.3189/002214310794457173)
Bahr, DB (1995) Simulating iceberg calving with a percolation model. J. Geophys. Res., 100(B4), 62256232 (doi: 10.1029/94JB03133)
Bak, P (1999) How nature works: the science of self-organized criticality. Springer, New York
Bak, P, Tang, C and Wiesenfeld, K (1987) Self-organised criticality: an explanation of 1/f noise. Phys. Rev. Lett., 59(4), 381384 (doi: 10.1103/PhysRevLett.59.381)
Bak, P, Tang, C and Wiesenfeld, K (1988) Self organised criticality. Phys. Rev. A, 38(1), 364374 (doi: 10.1103/PhysRevA.38.364)
Bak, P, Christensen, K, Danon, L and Scanlon, T (2002) Unified scaling law for earthquakes. Phys. Rev. Lett., 88(17), 178 501 (doi: 10.1103/PhysRevLett.88.178501)
Bassis, JN (2011) The statistical physics of iceberg calving and the emergence of universal calving laws. J. Glaciol., 57(201), 316 (doi: 10.3189/002214311795306745)
Benn, DI, Warren, CW and Mottram, RH (2007a) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(3–4), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Benn, DI, Hulton, NRJ and Mottram, RH (2007b) ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46, 123130 (doi: 10.3189/172756407782871161)
Briner, JP, Bini, AC and Anderson, RS (2009) Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. Nature Geosci., 2(7), 496499 (doi: 10.1038/ngeo556)
Brown, CS, Meier, MF and Post, A (1982) Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. USGS Prof. Pap. 1258-C, C1C13
Budd, WF, Jacka, TH and Morgan, VI (1980) Antarctic iceberg melt rates derived from size distributions and movement rates. Ann. Glaciol., 1, 103112
Chapuis, A, Rolstad, C and Norland, R (2010) Interpretation of amplitude data from a ground-based radar in combination with terrestrial photogrammetry and visual observations for calving monitoring of Kronebreen, Svalbard. Ann. Glaciol., 51 (55), 3440 (doi: 10.3189/172756410791392781)
Clauset, A, Shalizi, CR and Newman, MEJ (2009) Power-law distributions in empirical data. SIAM Rev., 51(4), 661703 (doi: 10.1137/070710111)
Cox, DR (1962) Renewal theory. Methuen, London
Gewaltig, M-O and Diesmann, M (2007) NEST (NEural Simulation Tool). Scholarpedia, 2(4), 1430 (doi: 10.4249/scholarpedia.1430)
Guzzetti, F, Malamud, BD, Turcotte, DL and Reichenbach, P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett., 195(3–4), 169183 (doi: 10.1016/S0012–821X(01)00589–1)
Hainzl, S (2003) Self-organization of earthquake swarms. J. Geodyn., 35(1–2), 157172 (doi: 10.1016/S0264–3707(02)00060–1)
Herz, AVM and Hopfield, JJ (1995) Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements. Phys. Rev. Lett., 75(6), 12221225 (doi: 10.1103/PhysRevLett.75.1222)
Kavanaugh, JL (2009) Exploring glacier dynamics with subglacial water pressure pulses: evidence for self-organized criticality? J. Geophys. Res., 114(F1), F01021 (doi: 10.1029/2008JF001036)
Köhler, A, Chapuis, A, Nuth, C, Kohler, J and Weidle, C (2012) Autonomous detection of calving-related seismicity at Kronebreen, Svalbard. Cryosphere, 6(2), 393406 (doi: 10.5194/tc-6–393–2012)
Lapicque, L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization. J. Physiol. Pathol. Gén., 9, 620635
Motyka, RJ, Truffer, M, Fahnestock, M, Mortensen, J, Rysgaard, S and Howat, I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Neshyba, S (1980) On the size distribution of Antarctic icebergs. Cold Reg. Sci. Technol., 1(3–4), 241248 (doi: 10.1016/0165–232X(80)90052-X)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci., 2(2), 110114 (doi: 10.1038/ngeo394)
Nick, FM, Van der Veen, CJ, Vieli, A and Benn, DI (2010) A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics. J. Glaciol., 56(199), 781794 (doi: 10.3189/002214310794457344)
Oerlemans, J, Jania, J and Kolondra, L (2011) Application of a minimal glacier model to Hansbreen, Svalbard. Cryosphere, 5(1), 111 (doi: 10.5194/tc-5–1–2011)
O’Neel, S, Echelmeyer, KA and Motyka, RJ (2003) Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, USA. J. Glaciol., 49(167), 587598 (doi: 10.3189/172756503781830430)
O’Neel, S, Larsen, CF, Rupert, N and Hansen, R (2010) Iceberg calving as a primary source of regional-scale glacier-generated seismicity in the St Elias Mountains, Alaska. J. Geophys. Res., 115(F4), F04034 (doi: 10.1029/2009JF001598)
Orheim, O (1985) Iceberg discharge and the mass balance of Antarctica. In Glaciers, ice sheets, and sea level: effect of a CO2 induced climatic change. Report of a Workshop held in Seattle, Washington, September 13–15, 1984. (Report DOE/ER/60235–1) US Department of Energy, Washington, DC, 210215
Otero, J, Navarro, FJ, Martin, C, Cuadrado, ML and Corcuera, MI (2010) A three-dimensional calving model: numerical experiments on Johnsons Glacier, Livingston Island, Antarctica. J. Glaciol., 56(196), 200214 (doi: 10.3189/002214310791968539)
Pfeffer, WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3), F03S25 (doi: 10.1029/2006JF000590)
Rampal, P, Weiss, J, Marsan, D, Lindsay, R and Stern, H (2008) Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res., 113(C3), C03002 (doi: 10.1029/2007JC004143)
Richeton, T, Weiss, J and Louchet, F (2005) Dislocation avalanches: role of temperature, grain size and strain hardening. Acta Mater., 53(16), 44634471 (doi: 10.1016/j.actamat.2005.06.007)
Rolstad, C and Norland, R (2009) Ground-based interferometric radar for velocity and calving-rate measurements of the tide-water glacier at Kronebreen, Svalbard. Ann. Glaciol., 50(50), 4754 (doi: 10.3189/172756409787769771)
Shew, WL and Plenz, D (2013) The functional benefits of criticality in the cortex. Neuroscientist, 19(1), 88100 (doi: 10.1177/1073858412445487)
Stevens, SS (1957) On the psychophysical law. Psychol. Rev., 64(3), 153181 (doi: 10.1037/h0046162)
Tuckwell, HC (1988) Introduction to theoretical neurobiology. Volume 1: Linear cable theory and dendritic structure. Cambridge University Press, Cambridge
Van der Veen, CJ (1996) Tidewater calving. J. Glaciol., 42(141), 375385
Van der Veen, CJ ed. (1997) Calving glaciers: report of a Workshop, February 28–March 2, 1997. Byrd Polar Res. Cent. Rep. 15
Vieli, A, Funk, M and Blatter, H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J. Glaciol., 47(159), 595606 (doi: 10.3189/172756501781831747)
Vieli, A, Jania, J and Kolondra, L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J. Glaciol., 48(163), 592600 (doi: 10.3189/172756502781831089)
Wadhams, P (1988) Winter observations of iceberg frequencies and sizes in the South Atlantic Ocean. J. Geophys. Res., 93(C4), 35833590 (doi: 10.1029/JC093iC04p03583)
Warren, CR, Glasser, NF, Harrison, S, Winchester, V, Kerr, AR and Rivera, A (1995) Characteristics of tide-water calving at Glaciar San Rafael, Chile. J. Glaciol., 41(138), 273289
Washburn, HB Jr (1936) The Harvard–Dartmouth Alaskan expeditions, 1933–1934. Geogr. J., 87(6), 481495



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed