Skip to main content Accessibility help
×
×
Home

Vibrations of Mertz Glacier ice tongue, East Antarctica

  • L. Lescarmontier (a1) (a2), B. Legrésy (a1), R. Coleman (a2) (a3), F. Perosanz (a4), C. Mayet (a1) and L. Testut (a1)...

Abstract

At the time of its calving in February 2010, Mertz Glacier, East Antarctica, was characterized by a 145 km long, 35 km wide floating tongue. In this paper, we use GPS data from the Collaborative Research into Antarctic Calving and Iceberg Evolution (CRAC-ICE) 2007/08 and 2009/10 field seasons to investigate the dynamics of Mertz Glacier. Two months of data were collected at the end of the 2007/08 field season from two kinematic GPS stations situated on each side of the main rift of the glacier tongue and from rock stations located around the ice tongue during 2008/09. Using Precise Point Positioning with integer ambiguity fixing, we observe that the two GPS stations recorded vibrations of the ice tongue with several dominant periods. We compare these results with a simple elastic model of the ice tongue and find that the natural vibration frequencies are similar to those observed. This information provides a better understanding of their possible effects on rift propagation and hence on the glacier calving processes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vibrations of Mertz Glacier ice tongue, East Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vibrations of Mertz Glacier ice tongue, East Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vibrations of Mertz Glacier ice tongue, East Antarctica
      Available formats
      ×

Copyright

References

Hide All
Altamimi, Z, Collilieux, X, Legrand, J, Garayt, B and Boucher, C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res., 112(B9), B09401 (doi: 10.1029/2007JB004949)
Anandakrishnan, S, Voigt, DE, Alley, RB and King, MA (2003) Ice Stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophys. Res. Lett., 30(7), 1361 (doi: 10.1029/2002GLO16329)
Bertiger, W and 6 others (2010) Single receiver phase ambiguity resolution with GPS data. J. Geod., 84(5), 327-337 (doi: 10.1007/s00190-010-0371-9)
Blewitt, G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res., 98(B8), 10187-10203 (doi: 10.1029/ JB094iB08p10187)
Boehm, J, Niell, A, Tregoning Pand Schuh, H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res. Lett., 33(7), L07304 (doi: 10.1029/2005GLO25546)
Boehm, J, Heinkelmann, R and Schuh, H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod., 81(10), 679-683 (doi: 10.1007/500190-007-0135-3)
Bromirski, PD, Sergienko, OV and MacAyeal, DR (2010) Trans oceanic infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett., 37(L2), L02502 (doi: 10.1029/ 2009GL041488)
Brunt, KM, Okal, EA and MacAyeal, DR (2011) Antarctic ice- shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol., 57(205), 785-788 (doi: 10.3189/002214311798043681)
Chen, G (1998) GPS kinematic positioning for the airborne laser altimetery at Long Valley, California (PhD thesis, Massachusetts Institute of Technology)
Clough, JW and Hansen, BL (1979) The Ross Ice Shelf project. Science, 203(4379), 433-434 (doi: 10.1126/science.203.4379.433)
Dow, JM, Neilan, RE and Rizos, C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod., 83(3-4), 191-198 (doi: 10.1007/s00190-008- 0300-3)
Frezzotti, M, Cimbelli, A and Ferrigno, JG (1998) Ice-front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912-96. Ann. Glaciol., 27, 643-650
Ge, M, Gendt, G, Rothacher, M, Shi, C and Liu, J (2008) Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod., 82(7), 389-399 (doi: 10.1007/ s00190-007-0187-4)
Geng, J, Meng, X, Dodson, AH and Teferle, FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J. Geod., 84(9), 569-581 (doi: 10.1007/s00190- 010-0399-x)
Glen, JW(1955) The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519-538
Goodman, DJ and Holdsworth, R (1978) Continuous surface strain measurements on sea ice and on Erebus Glacier Tongue, McMurdo Sound, Antarctica. Antarct. J. US, 13(4), 67-70
Grinsted, A, Moore, JC and Jevrejeva, S (2004) Application of the cross wavelet transform and wavelet coherence in geophysical time series. Nonlinear Process. Geophys., 11(5-6), 561-566 (doi: 10.5194/npg-11-561-2004)
Gudmundsson, GH (2007) Tides and the flow of Rutford Ice Stream, West Antarctica. J. Geophys. Res., 112(F4), F04007 (doi: 10.1029/2006JF000731)
Gui, EH and Squire, VA (1989) Random vibration of floating ice tongues. Antarct. Sci., 1(2), 157-163
Herring, TA (1992) Modelling atmospheric delays in the analysis of space geodetic data. In Spoelstra, TATh and De Munck, JC eds. Refraction of Transatmospheric Signals in Geodesy: proceedings of the symposium, The Hague, 19-22 May 1992. Nederlandse Commissie voor Geodesie, Delft, 157-164
Herring, T ed (2009) Treatise on geophysics. Vol. 3: Geodesy. Elsevier, Amsterdam
Holdsworth, G (1969) Flexure of a floating ice tongue. J. Glaciol., 8(54), 385-397
Holdsworth, G (1977) Some mechanisms for calving icebergs. In Husseiny, AA ed. Proceedings of the 1st International Con ference and Workshops on Iceberg Utlization for Fresh Water Production, Weather Modification, and Other Applications, 2-6 October 1977, Iowa State University, Ames, Iowa, USA. Pergamon Press, New York, 160-175
Holdsworth, G (1985) Some effects of ocean currents and wave motion on the dynamics of floating glacier tongues. In Jacobs, SS ed. Oceanology of the Antarctic continental shelf. American Geophysical Union, Washington, DC, 253-271 (Antarctic Research Series 43)
Holdsworth, G and Glynn, JE (1981) A mechanism for the formation of large icebergs. J. Geophys. Res., 86(C4), 3210-3222 (doi: 10.1029/JC086iC04p03210)
Jeffries, MO (1985) Ice shelf studies off northern Ellesmere Island, Spring 1983. Arctic, 38(3), 174-177
King, M and Aoki, S (2003) Tidal observations on floating ice using a single GPS receiver. Geophys. Res. Lett., 30(3), 1138 (doi: 10.1029/2002GL016182)
King, MA, Makinson, K and Gudmundsson, GH (2011) Nonlinear interaction between ocean tides and the Larsen C Ice Shelf system. Geophys. Res. Lett., 38(8), L08501 (doi: 10.1029/ 2011GL046680)
Laurichesse, D, Mercier, F, Berthias, J-P, Broca, P and Cerri, L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149
Le Bars, Y, Lyard, F, Jeandel, C and Dardengo, L (2010) The AMANDES tidal model for the Amazon estuary and shelf. Ocean Model., 31(3-4), 132-149 (doi: 10.1016/j.ocemod.2009. 11.001)
Legresy, B, Wendt, A, Tabacco, IE, Remy, F and Dietrich, R (2004) Influence of tides and tidal current on Mertz Glacier, Antarctica. J. Glaciol., 50(170), 427-435 (doi: 10.3189/ 172756504781829828)
Lescarmontier, L (2012) Etude des processus de fracturation, déformation et vêlage d'iceberg en Antarctique: une histoire du glacier Mertz (PhD thesis, Université de Toulouse)
Lingle, CS, Hughes, TJ and Kollmeyer, RC (1981) Tidal flexure of Jakobshavns Glacier, West Greenland. J. Geophys. Res., 86(B5), 3960-3968 (doi: 10.1029/JB086iB05p03960)
Lliboutry, L(1964) Sub-glacial 'supercavitation' as a cause of the rapid advances of glaciers. Nature, 202(4927), 77 (doi: 10.1038/ 202077a0)
Loyer, S, Perosanz, F, Capdeville, H and Soudarin, L (2009) CNES-CLS IGS Analysis Center activities. Geophys. Res. Abstr., 11, EGU2009-7138
Lyard, F, Lefevre, F, Letellier, T and Francis, O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn., 56(5-6), 394-415 (doi: 10.1007/s10236-006-0086-x)
Lynch, DR and Gray, WG (1979) A wave equation model for finite element tidal computations. Comput. Fluids, 7(3), 207-228 (doi: 10.1016/0045-7930(79)90037-9)
Perosanz, F, Fund, F, Mercier, F, Loyer, S and Capdeville, H (2010) Errors analysis in GPS Precise Point Positioning: impact of ambiguity fixing. [Abstract G11A-0619] American Geophysical Union, Fall Meet. (http://adsabs.harvard.edu/abs/2010ADUFM.G11A0619P)
Rabus, BT and Lang, O (2002) On the representation of ice-shelf grounding zones in SAR interferograms. J. Glaciol., 48(162), 345-356 (doi: 10.3189/172756502781831197)
Reeh, N, Lintz Christensen, E, Mayer, C and Olesen, OB (2003) Tidal bending of glaciers: a linear viscoelastic approach. Ann. Glaciol., 37, 83-89 (doi: 10.3189/172756403781815663)
Rignot, E (2002) Mass balance of East Antarctic glaciers and ice shelves from satellite data. Ann. Glaciol., 34, 217-227 (doi: 10.3189/172756402781817419)
Robinson, WH and Haskell, TG (1992) Travelling flexural waves in the Erebus Glacier tongue, McMurdo Sound, Antarctica. Cold Reg. Sci. Technol., 20(3), 289-293
Schulson, EM and Duval, P (2009) Creep and fracture of ice. Cambridge University Press, Cambridge
Swithinbank, C, McClain, P and Little, P (1977) Drift tracks of Antarctic icebergs. Polar Rec., 18(116), 495-501
Thiel, E, Crary, AP, Haubrich, RA and Behrendt, JC (1960) Gravi metric determination of ocean tide, Weddell and Ross Seas, Antarctica. J. Geophys. Res., 65(2), 629-636 (doi: 10.1029/ JZ065i002p00629)
Vaughan, DG (1995) Tidal flexure at ice shelf margins. J. Geophys. Res., 100(B4), 6213-6224 (doi: 10.1029/94JB02467)
Vinogradov, OG and Holdsworth, GH (1985) Oscillation of a floating glacier tongue. Cold Reg. Sci. Technol., 10(3), 263-271
Wendler, G, Ahlnas, K and Lingle, CS (1996) On Mertz and Ninnis Glaciers. J. Glaciol., 42(142), 447-453
Williams, RT and Robinson, ES (1979) Ocean tide and waves beneath the Ross Ice Shelf, Antarctica. Science, 203(4379), 443-445
Williams, RT and Robinson, ES (1981) Flexural waves in the Ross Ice Shelf. J. Geophys. Res., 86(C7), 6643-6648 (doi: 10.1029/ JC086iC07p06643)
Zhang, X and Andersen, OB (2006) Surface ice flow velocity and tide retrieval of the Amery Ice Shelf using precise point positioning. J. Geod., 80(4), 171-176 (doi: 10.1007/s00190-006-0062-8)
Zumberge, JF, Heflin, MB, Jefferson, DC, Watkins, MM and Webb, FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102(B3), 5005-5017 (doi: 10.1029/96JB03860)
Zumberge, JH and Swithinbank, C (1962) The dynamics of ice shelves. In Wexler H, Rubin MJ and Caskey JE, Jr eds. Antarctic Research: the Mathew Fontaine Maury Memorial Symposium. American Geophysical Union, Washington, DC, 197-208 (Geophysical Monograph 7)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed