Hostname: page-component-6bb9c88b65-bcq64 Total loading time: 0 Render date: 2025-07-21T20:12:44.790Z Has data issue: false hasContentIssue false

Genetic variation and population structure of Haemonchus contortus: an in-silico analysis

Published online by Cambridge University Press:  15 July 2025

W. Wei
Affiliation:
College of Veterinary Medicine, https://ror.org/015d0jq83 Inner Mongolia Agricultural University , Hohhot, Inner Mongolia, People’s Republic of China Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, People’s Republic of China
Z. Lan
Affiliation:
Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, College of Animal Science and Veterinary Medicine, https://ror.org/030jxf285 Heilongjiang Bayi Agricultural University , Daqing, 163319, Heilongjiang Province, China Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
Xuewei Liu
Affiliation:
Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, College of Animal Science and Veterinary Medicine, https://ror.org/030jxf285 Heilongjiang Bayi Agricultural University , Daqing, 163319, Heilongjiang Province, China Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
Xinhui Zhang
Affiliation:
Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, College of Animal Science and Veterinary Medicine, https://ror.org/030jxf285 Heilongjiang Bayi Agricultural University , Daqing, 163319, Heilongjiang Province, China Heilongjiang Province Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, China
X. Gu
Affiliation:
College of Veterinary Medicine, https://ror.org/015d0jq83 Inner Mongolia Agricultural University , Hohhot, Inner Mongolia, People’s Republic of China Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, People’s Republic of China
R. Wang*
Affiliation:
College of Veterinary Medicine, https://ror.org/015d0jq83 Inner Mongolia Agricultural University , Hohhot, Inner Mongolia, People’s Republic of China Key Laboratory of Clinical Diagnosis and Treatment of Animal Diseases, Ministry of Agriculture, National Animal Medicine Experimental Teaching Center, People’s Republic of China
*
Corresponding author: R. Wang; Email: wr2006@163.com

Abstract

Haemonchus contortus is a parasitic nematode that causes significant economic losses in ruminant livestock worldwide. In this study, we assessed the global genetic diversity and population structure of H. contortus using mitochondrial COX1 and ribosomal ITS2 sequences retrieved from the NCBI GenBank database. In total, 324 haplotypes of the COX1 and 72 haplotypes of the ITS2 were identified. The haplotype diversity values were all higher than 0.5, and the nucleotide diversity values were higher than 0.005. The Tajima’s D value for COX1 (−1.65634) was higher than that for ITS2 (−2.60400). Fu’s Fs, Fu and Li’s D (FLD), and Fu and Li’s F (FLF) values also showed high negative values, indicating a high probability of future population growth. In addition, the high fixation index (FST) value suggests significant genetic differentiation among populations. The haplotype networks of H. contortus populations based on COX1 sequences revealed clear geographic clustering, whereas ITS2 sequences showed more haplotype admixture across regions. The results of phylogenetic analyses were consistent with the haplotype networks. These findings highlighted that H. contortus populations exhibit significant genetic variation and are undergoing rapid population expansion, with clear genetic differences across geographic regions. This study established critical baseline data for future molecular epidemiology studies, which could guide region-specific parasite surveillance and targeted control strategies, thus helping to mitigate the risk of cross-border parasite transmission and drug resistance.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbas, I and Hildreth, MB (2022) Trichostrongyle infections in domestic ruminants from Egypt: A systematic review and meta-analysis. Veterinary Parasitology Regional Studies and Reports 34, 100761. https://doi.org/10.1016/j.vprsr.2022.100761.CrossRefGoogle ScholarPubMed
Ali, Q, Rashid, I, Shabbir, MZ, Shahzad, K, Ashraf, K, Sargison, ND and Chaudhry, U (2018) Population genetics of benzimidazole-resistant Haemonchus contortus and Haemonchus placei from buffalo and cattle: Implications for the emergence and spread of resistance mutations. Parasitology Research 117, 35753583. https://doi.org/10.1007/s00436-018-6055-8.CrossRefGoogle ScholarPubMed
Bandelt, HJ, Forster, P and Röhl, A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 3748. https://doi.org/10.1093/oxfordjournals.molbev.a026036.CrossRefGoogle ScholarPubMed
Besier, RB, Kahn, LP, Sargison, ND and Van Wyk, JA (2016) The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Advances in Parasitology 93, 95143. https://doi.org/10.1016/bs.apar.2016.02.022.CrossRefGoogle ScholarPubMed
Bhat, RA, Tak, H, Bhat, BA, Dar, JA and Ahmad, R (2022) Gastrointestinal helminth parasites of wild ungulates in Hirpora Wildlife Sanctuary, Kashmir, India. Journal of Parasitic Diseases 46, 804810. https://doi.org/10.1007/s12639-022-01493-3.CrossRefGoogle ScholarPubMed
Blouin, MS (2002) Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. Journal of Parasitic Diseases 32, 527531. https://doi.org/10.1016/s0020-7519(01)00357-5.Google ScholarPubMed
Blouin, MS, Yowell, CA, Courtney, CH and Dame, JB (1995) Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014. https://doi.org/10.1093/genetics/141.3.1007.CrossRefGoogle ScholarPubMed
Brasil, BS, Nunes, RL, Bastianetto, E, Drummond, MG, Carvalho, DC, Leite, RC, Molento, MB and Oliveira, DA (2012) Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. International Journal for Parasitology 42, 469479. https://doi.org/10.1016/j.ijpara.2012.03.003.CrossRefGoogle ScholarPubMed
Chaudhry, U, Redman, EM, Abbas, M, Muthusamy, R, Ashraf, K and Gilleard, JS (2015) Genetic evidence for hybridisation between Haemonchus contortus and Haemonchus placei in natural field populations and its implications for interspecies transmission of anthelmintic resistance. International Journal for Parasitology 45, 149159. https://doi.org/10.1016/j.ijpara.2014.09.002.CrossRefGoogle ScholarPubMed
Chaudhry, U, Redman, EM, Kaplan, R, Yazwinski, T, Sargison, N and Gilleard, JS (2020) Contrasting patterns of isotype-1 β-tubulin allelic diversity in Haemonchus contortus and Haemonchus placei in the southern USA are consistent with a model of localized emergence of benzimidazole resistance. Veterinary Parasitology 286, 109240. https://doi.org/10.1016/j.vetpar.2020.109240.CrossRefGoogle Scholar
Dey, AR, Zhang, Z, Begum, N, Alim, MA, Hu, M and Alam, MZ (2019) Genetic diversity patterns of Haemonchus contortus isolated from sheep and goats in Bangladesh. Infection, Genetics and Evolution 68, 177184. https://doi.org/10.1016/j.meegid.2018.12.021.CrossRefGoogle ScholarPubMed
Doyle, SR, Tracey, A, Laing, R, Holroyd, N, Bartley, D, Bazant, W, Beasley, H, Beech, R, Britton, C, Brooks, K, Chaudhry, U, Maitland, K, Martinelli, A, Noonan, JD, Paulini, M, Quail, MA, Redman, E, Rodgers, FH, Sallé, G, Shabbir, MZ, Sankaranarayanan, G, Wit, J, Howe, KL, Sargison, N, Devaney, E, Berriman, M, Gilleard, JS and Cotton, JA (2020) Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Communications Biology 3, 656. https://doi.org/10.1038/s42003-020-01377-3.CrossRefGoogle Scholar
Escribano, C, Saravia, A, Costa, M, Castells, D, Ciappesoni, G, Riet-Correa, F and Freire, T (2019) Resistance to Haemonchus contortus in Corriedale sheep is associated to high parasite-specific IgA titer and a systemic Th2 immune response. Scientific Reports 9, 19579. https://doi.org/10.1038/s41598-019-55447-6.CrossRefGoogle Scholar
Feng, X, Huang, L, Lin, L, Yang, M and Ma, Y (2017) Genetic diversity and population structure of the primary malaria vector Anopheles sinensis (Diptera: Culicidae) in China inferred by cox1 gene. Parasites and Vectors 10, 75. https://doi.org/10.1186/s13071-017-2013-z.CrossRefGoogle Scholar
Fiel, C, Guzmán, M, Steffan, P, Rodriguez, E, Prieto, O and Bhushan, C (2011) The efficacy of trichlorphon and naphthalophos against multiple anthelmintic-resistant nematodes of naturally infected sheep in Argentina. Parasitology Research 109, S139S148. https://doi.org/10.1007/s00436-011-2410-8.CrossRefGoogle ScholarPubMed
Gilleard, JS, Kotze, AC, Leathwick, D, Nisbet, AJ, McNeilly, TN and Besier, B (2021) A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. International Journal for Parasitology 51, 11331151. https://doi.org/10.1016/j.ijpara.2021.10.007.CrossRefGoogle Scholar
Habte, A and Ibrahim, N (2018) Prevalence of Haemonchus contortus infection in sheep slaughtered at Jimma town municipal abattoir, Ethiopia. Tropical Animal Health and Production 50, 18651870. https://doi.org/10.1007/s11250-018-1637-0.CrossRefGoogle ScholarPubMed
Hebert, PD, Cywinska, A, Ball, SL and deWaard, JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270, 313321. https://doi.org/10.1098/rspb.2002.2218.CrossRefGoogle ScholarPubMed
Hoberg, ER, Lichtenfels, JR and Gibbons, L (2004) Phylogeny for species of Haemonchus (Nematoda: Trichostrongyloidea): Considerations of their evolutionary history and global biogeography among Camelidae and Pecora (Artiodactyla). Journal of Parasitology 90, 10851102. https://doi.org/10.1645/GE-3309.CrossRefGoogle ScholarPubMed
Hollingsworth, PM, Graham, SW and Little, DP (2011) Choosing and using a plant DNA barcode. PLoS One 6, e19254. https://doi.org/10.1371/journal.pone.0019254.CrossRefGoogle ScholarPubMed
Hosseinnezhad, H, Sharifdini, M, Ashrafi, K, Atrkar Roushan, Z, Mirjalali, H and Rahmati, B (2021) Trichostrongyloid nematodes in ruminants of northern Iran: Prevalence and molecular analysis. BMC Veterinary Research 17, 371. https://doi.org/10.1186/s12917-021-03086-3.CrossRefGoogle ScholarPubMed
Hussain, T, Periasamy, K, Nadeem, A, Babar, ME, Pichler, R and Diallo, A (2014) Sympatric species distribution, genetic diversity and population structure of Haemonchus isolates from domestic ruminants in Pakistan. Veterinary Parasitology 206, 188199. https://doi.org/10.1016/j.vetpar.2014.10.026.CrossRefGoogle ScholarPubMed
Hutchison, DW and Templeton, AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53, 18981914. https://doi.org/10.1111/j.1558-5646.1999.tb04571.CrossRefGoogle ScholarPubMed
Liang, JB and Paengkoum, P (2019) Current status, challenges and the way forward for dairy goat production in Asia - Conference summary of dairy goats in Asia. Asian-Australasian Journal of Animal Sciences 32, 12331243. https://doi.org/10.5713/ajas.19.0272.CrossRefGoogle ScholarPubMed
Liu, ZX, Zhang, Y, Liu, YT, Chang, QC, Su, X, Fu, X, Yue, DM, Gao, Y and Wang, CR (2016) Complete mitochondrial genome of Echinostoma hortense (Digenea: Echinostomatidae). Korean Journal of Parasitology 54, 7379. https://doi.org/10.3347/kjp.2016.54.2.173.CrossRefGoogle ScholarPubMed
Maciel, S, Giménez, AM, Gaona, C, Waller, PJ and Hansen, JW (1996) The prevalence of anthelmintic resistance in nematode parasites of sheep in southern Latin America: Paraguay. Veterinary Parasitology 62, 207212. https://doi.org/10.1016/0304-4017(95)00907-8.CrossRefGoogle ScholarPubMed
Maddison, DR, Swofford, DL and Maddison, WP (1997) NEXUS: An extensible file format for systematic information. Systematic Biology 46, 590621. https://doi.org/10.1093/sysbio/46.4.590.CrossRefGoogle ScholarPubMed
Moreira, RT, Mota, ALA, Gonçalves, VSP, Rocha, GCD and Borges, JRJ (2021) Situation of and phenotypic markers of susceptibility to helminth infection among sheep on farms in the Brazilian cerrado biome. Revista Brasileira de Parasitologia Veterinária 30, e021720. https://doi.org/10.1590/S1984-296120201092.CrossRefGoogle ScholarPubMed
Naeem, M, Iqbal, Z and Roohi, N (2020) Ovine haemonchosis: A review. Tropical Animal Health and Production 53, 19. https://doi.org/10.1007/s11250-020-02439-8.CrossRefGoogle ScholarPubMed
Nath, TC, Lee, D, Park, H, Choe, S, Ndosi, BA, Kang, Y, Bia, MM, Eamudomkarn, C, Mohanta, UK, Islam, KM, Bhuiyan, JU, Jeon, HK and Eom, KS (2021) Morphometrical and molecular characterization of Oesophagostomum columbianum (Chabertiidae: Oesophagostominae) and Haemonchus contortus (Trichostrongylidae: Haemonchinae) isolated from goat (Capra hircus) in Sylhet, Bangladesh. Journal of Parasitology Research 2021, 8863283. https://doi.org/10.1155/2021/8863283.CrossRefGoogle Scholar
Pitaksakulrat, O, Chaiyasaeng, M, Artchayasawat, A, Eamudomkarn, C, Thongsahuan, S and Boonmars, T (2021a) The first molecular identification of benzimidazole resistance in Haemonchus contortus from goats in Thailand. Veterinary World 14, 764768. https://doi.org/10.14202/vetworld.2021.764-768.CrossRefGoogle Scholar
Pitaksakulrat, O, Chaiyasaeng, M, Artchayasawat, A, Eamudomkarn, C, Boonmars, T, Kopolrat, KY, Prasopdee, S, Petney, TN, Blair, D and Sithithaworn, P (2021b) Genetic diversity and population structure of Haemonchus contortus in goats from Thailand. Infection, Genetics and Evolution 95, 105021. https://doi.org/10.1016/j.meegid.2021.105021.CrossRefGoogle Scholar
Ramos-Onsins, SE and Rozas, J (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 20922100. https://doi.org/10.1093/oxfordjournals.molbev.a004034.CrossRefGoogle ScholarPubMed
Rose, H, Caminade, C, Bolajoko, MB, Phelan, P, van Dijk, J, Baylis, M, Williams, D and Morgan, ER (2016) Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe. Global Change Biology 22, 12711285. https://doi.org/10.1111/gcb.13132.CrossRefGoogle Scholar
Rozas, J, Ferrer-Mata, A, Sánchez-DelBarrio, JC, Guirao-Rico, S, Librado, P, Ramos-Onsins, SE and Sánchez-Gracia, A (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution 34, 32993302. https://doi.org/10.1093/molbev/msx248.CrossRefGoogle ScholarPubMed
Sanders, J, Xie, Y, Gazzola, D, Li, H, Abraham, A, Flanagan, K, Rus, F, Miller, M, Hu, Y, Guynn, S, Draper, A, Vakalapudi, S, Petersson, KH, Zarlenga, D, Li, RW, Urban, JF Jr, Ostroff, GR, Zajac, A and Aroian, RV (2020) A new paraprobiotic-based treatment for control of Haemonchus contortus in sheep. International Journal for Parasitology Drugs and Drug Resistance 14, 230236. https://doi.org/10.1016/j.ijpddr.2020.11.004.CrossRefGoogle ScholarPubMed
Shen, DD, Wang, JF, Zhang, DY, Peng, ZW, Yang, TY, Wang, ZD, Bowman, DD, Hou, ZJ and Liu, ZS (2017) Genetic diversity of Haemonchus contortus isolated from sympatric wild blue sheep (Pseudois nayaur) and sheep in Helan Mountains, China. Parasites and Vectors 10, 437. https://doi.org/10.1186/s13071-017-2377-0.CrossRefGoogle ScholarPubMed
Simsek, E, Yildirim, A, Yilmaz, E, Inci, A, Duzlu, O, Onder, Z, Ciloglu, A, Yetismis, G and Pekmezci, GZ (2018) Occurrence and molecular characterization of Clinostomum complanatum (Trematoda: Clinostomidae) in freshwater fishes caught from Turkey. Parasitology Research 117, 21172124. https://doi.org/10.1007/s00436-018-5898-3.CrossRefGoogle ScholarPubMed
Stephens, JC, Schneider, JA, Tanguay, DA, Choi, J, Acharya, T, Stanley, SE, Jiang, R, Messer, CJ, Chew, A, Han, JH, Duan, J, Carr, JL, Lee, MS, Koshy, B, Kumar, AM, Zhang, G, Newell, WR, Windemuth, AS, Shaner, SL, Arnold, K, Schulz, V, Drysdale, CM, Nandabalan, K, Judson, RS, Ruano, G and Vovis, GF (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489493. https://doi.org/10.1126/science.1059431.CrossRefGoogle ScholarPubMed
Sweeny, JP, Robertson, ID, Ryan, UM, Jacobson, C and Woodgate, RG (2011) Comparison of molecular and McMaster microscopy techniques to confirm the presence of naturally acquired strongylid nematode infections in sheep. Molecular and Biochemical Parasitology 180, 6267. https://doi.org/10.1016/j.molbiopara.2011.07.007.CrossRefGoogle ScholarPubMed
Thang, TN, Hakim, H, Rahimi, RR and Ichikawa-Seki, M (2019) Molecular analysis reveals expansion of Fasciola hepatica distribution from Afghanistan to China. Parasitology International 72, 101930. https://doi.org/10.1016/j.parint.2019.101930.CrossRefGoogle ScholarPubMed
Troell, K, Engström, A, Morrison, DA, Mattsson, JG and Höglund, J (2006) Global patterns reveal strong population structure in Haemonchus contortus, a nematode parasite of domesticated ruminants. International Journal for Parasitology 36, 13051316. https://doi.org/10.1016/j.ijpara.2006.06.015.CrossRefGoogle ScholarPubMed
Vamathevan, JJ, Hasan, S, Emes, RD, Amrine-Madsen, H, Rajagopalan, D, Topp, SD, Kumar, V, Word, M, Simmons, MD, Foord, SM, Sanseau, P, Yang, Z and Holbrook, JD (2008) The role of positive selection in determining the molecular cause of species differences in disease. BMC Evolutionary Biology 8, 273. https://doi.org/10.1186/1471-2148-8-273.CrossRefGoogle ScholarPubMed
Xie, J, Chen, Y, Cai, G, Cai, R, Hu, Z and Wang, H (2023) Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Research 51, W587W592. https://doi.org/10.1093/nar/gkad359.CrossRefGoogle ScholarPubMed
Yadav, CL, Kumar, R, Uppal, RP and Verma, SP (1995) Multiple anthelmintic resistance in Haemonchus contortus on a sheep farm in India. Veterinary Parasitology 60, 355360.10.1016/0304-4017(95)00769-2CrossRefGoogle ScholarPubMed
Yang, X, Qi, MW, Zhang, ZZ, Gao, C, Wang, CQ, Lei, WQ, Tan, L, Zhao, JL, Fang, R and Hu, M (2017) Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Haemonchus contortus in goat fecal samples. Journal of Parasitology 103, 161167. https://doi.org/10.1645/16-157.CrossRefGoogle ScholarPubMed
Zajac, AM and Gipson, TA (2000) Multiple anthelmintic resistance in a goat herd. Veterinary Parasitology 87, 163172. https://doi.org/10.1016/s0304-4017(99)00174-0.CrossRefGoogle Scholar
Zheng, X, Chang, QC, Zhang, Y, Tian, SQ, Lou, Y, Duan, H, Guo, DH, Wang, CR and Zhu, XQ (2014) Characterization of the complete nuclear ribosomal DNA sequences of Paramphistomum cervi. Science World Journal 2014, 751907. https://doi.org/10.1155/2014/751907.Google ScholarPubMed
Zhu, J, Moawad, AR, Wang, CY, Li, HF, Ren, JY and Dai, YF (2018) Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine 6, S15S26. https://doi.org/10.1016/j.ijvsm.2018.02.003.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wei et al. supplementary material

Wei et al. supplementary material
Download Wei et al. supplementary material(File)
File 116.3 KB