Skip to main content Accessibility help
×
×
Home

A comparison of the FMRFamide-like peptide proteolytic activities of preparations from two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita): possible targets for novel control

  • E.P. Masler (a1)

Abstract

Proteolytic activities in extracts from the plant-parasitic nematodes Heterodera glycines and Meloidogyneincognita were examined for their abilities to digest three FRET-modified peptide substrates representing members of the large FMRFamide-like peptide (FLP) family in nematodes. Included were sequences distributed across all nematode species (KSAYMRFa and KHEYLRFa) and a sequence confined to a narrow range of plant-parasitic nematodes (KHEFVRFa). Species variations were observed among substrate affinities, reaction rates and effect of protease inhibitors. Km values for KHEYLRFa (1.48 ± 0.34 μm) and KSAYMRFa (2.13 ± 0.24 μm) in H. glycines were each lower (P< 0.05) than those for the same substrates in M. incognita (5.26 ± 1.30 μm and 3.90 ± 0.61 μm, respectively). The Km of KHEFVRFa was lower (P< 0.05) in M. incognita (5.83 ± 0.36 μm) than in H. glycines (11.01 ± 1.26 μm). Reaction rates (Vmax/min/μg) for KHEYLRFa were the same for both species, but KSAYMRFa and KHEFVRFa digestion rates were each nearly twofold higher (P< 0.05) in M. incognita than in H. glycines. Digestion of KSAYMRFa was strongly inhibited in both species by 4-(2-aminoethyl)-benzenesulfonyl-fluoride-HCl (AEBSF) and EDTA, but M. incognita was more sensitive (P< 0.05) to inhibition. AEBSF and EDTA (both at 1 mm) inhibited M. incognita activity 62.3% and 36.6% more, respectively, than H. glycines activity. Serine protease inhibition differed significantly (P< 0.05) between the two species. Maximum inhibition of M. incognita (76%) occurred at 1.85 mm AEBSF while maximum inhibition of H. glycines was 40% at 1.19 mm AEBSF.

Copyright

Corresponding author

* Fax: 301-504-5062, E-mail: edward.masler@ars.usda.gov

References

Hide All
Castagnone-Sereno, P., Deleury, E., Danchin, E.G.J., Perfus-Barbeoch, L. & Abad, P. (2011) Data-mining of the Meloidogyne incognita degradome and comparative analysis of proteases in nematodes. Genomics 97, 2936.
Cohen, M., Reale, V., Olofsson, B., Knights, A., Evans, P. & de Bono, M. (2009) Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metabolism 9, 375385.
Craig, H., Isaac, R.E. & Brooks, D.R. (2007) Unravelling the moulting degradome: new opportunities for chemotherapy? Trends in Parasitology 23, 248253.
Greenwood, K., Williams, T. & Geary, T. (2005) Nematode neuropeptide receptors and their development as anthelmintic screens. Parasitology 131, S169S177.
Holden-Dye, L. & Walker, R.J. (2011) Neurobiology of plant parasitic nematodes. Invertebrate Neuroscience 11, 919.
Husson, S.J., Mertens, I., Janssen, T., Lindemans, M. & Schoofs, L. (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Progress in Neurobiology 82, 3355.
Johnston, M.J.G., McVeigh, P., McMaster, S., Fleming, C.C. & Maule, A.G. (2010) FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. Journal of Helminthology 84, 253265.
Kimber, M.J. & Fleming, C.C. (2005) Neuromuscular function in plant parasitic nematodes: a target for novel control strategies? Parasitology 131, S129S142.
Kimber, M.J., Fleming, C.C., Prior, A., Jones, J.T., Halton, D.W. & Maule, A.G. (2002) Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridization. International Journal for Parasitology 32, 10951105.
Kimber, M.J., McKinney, S., McMaster, S., Day, T.A., Fleming, C.C. & Maule, A.G. (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB Journal 21, 12331243.
Li, C. & Kim, K. (2010) Neuropeptide gene families in Caenorhabditis elegans. pp. 98137in Geary, T.G. & Maule, A.G. (Eds) Neuropeptide systems as targets for parasite and pest control, Advances in experimental medicine and biology 692. New York, Springer Science & Business Media.
Liu, T., Kim, K., Li, C. & Barr, M.M. (2007) FMRFamide-like peptides and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. Journal of Neuroscience 27, 71747182.
Masler, E.P. (2008) Digestion of invertebrate neuropeptides by preparations from the free-living nematode Panagrellus redivivus. Journal of Helminthology 82, 279285.
Masler, E.P. (2012) In vitro proteolysis of nematode FMRFamide-like peptides (FLPs) by preparations from a free-living nematode (Panagrellus redivivus) and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita). Journal of Helminthology 86, 7784.
Maule, A.G., Mousley, A., Marks, N.J., Day, T.A., Thompson, D.P., Geary, T.G. & Halton, D.W. (2002) Neuropeptide signaling systems – potential drug targets for parasite control. Current Topics in Medicinal Chemistry 2, 733758.
McVeigh, P., Leech, S., Mair, G.R., Marks, N.J., Geary, T.G. & Maule, A.G. (2005) Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. International Journal for Parasitology 35, 10431060.
McVeigh, P., Geary, T.G., Marks, N.J. & Maule, A.G. (2006) The FLP-side of nematodes. Trends in Parasitology 22, 385396.
Moffett, C.L., Beckett, A.M., Mousley, A., Geary, T.G., Marks, N.J., Halton, D.W., Thompson, D.P. & Maule, A.G. (2003) The ovijector of Ascaris suum: multiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides. International Journal for Parasitology 33, 859876.
Papaioannou, S., Marsden, D., Franks, C.J., Walker, R.J. & Holden-Dye, L. (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. Journal of Neurobiology 65, 304319.
Rogers, C., Reale, V., Kim, K., Chatwin, H., Li, C., Evans, P. & de Bono, M. (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neuroscience 6, 11781185.
Sardanelli, S. & Kenworthy, W.J. (1997) Soil moisture control and direct seeding for bioassay of Heterodera glycines on soybean. Journal of Nematology 29, 625634.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Helminthology
  • ISSN: 0022-149X
  • EISSN: 1475-2697
  • URL: /core/journals/journal-of-helminthology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed