Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-26T12:50:58.236Z Has data issue: false hasContentIssue false

Helminth communities in murid rodents from southern and northern localities in Lao PDR: the role of habitat and season

Published online by Cambridge University Press:  03 April 2013

N. Pakdeenarong
Affiliation:
Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
P. Siribat
Affiliation:
Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
K. Chaisiri*
Affiliation:
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
B. Douangboupha
Affiliation:
National Agricultural Research Centre, National Agricultural and Forestry Research Institute, Vientiane, Lao PDR
A. Ribas
Affiliation:
Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020Antwerpen, Belgium
Y. Chaval
Affiliation:
INRA, UMR 1062 CBGP, F-34988Montpellier sur Lez, France
V. Herbreteau
Affiliation:
ESPACE-DEV, IRD – Université des Antilles et de la Guyane – Université de Montpellier 2 – Université de la Réunion, F-34093Montpellier, France
S. Morand
Affiliation:
Institut des Sciences de l'Evolution, UMR CNRS-IRD-UM2, Université de Montpellier 2, F-34093Montpellier, France CIRAD, UR AGIRs, F-34398Montpellier, France Department of Parasitology, Faculty of Veterinary Sciences Kasetsart University, Bangkok, Thailand

Abstract

The helminth communities of wild murid rodents were investigated in Luang Prabang and Champasak province, Lao PDR. Thirteen species of rodents (404 individuals) were infected by 19 species of parasites (2 trematode, 3 cestode, 14 nematode species). Four of the recorded helminth species (Echinostoma malayanum, Raillietina sp., Hymenolepis diminuta and H. nana) are known to cause potential zoonotic helminthiases of medical importance in the South-East Asian region. Individual helminth infection was significantly higher in the wet season. Habitat significantly influenced individual helminth species richness and individual helminth abudance, with a decrease of individual helminth species richness and individual helminth abundance from forest habitat to agricultural and human settlement habitats. The reduction of helminth diversity and abundance is discussed in relation to the ongoing increase of human influence on habitats in Lao PDR.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, C.J. (1946) Experiments on the relation between sex hormones and the growth of tapeworms (Hymenolepis diminuta) in rats. Journal of Parasitology 32, 574580.Google Scholar
Aplin, K.P., Brown, P.R., Jacob, J., Krebs, C. & Singleton, G.R. (2003) Field methods for rodent studies in Asia and the Indo-Pacific. ACIAR Monograph No. 100, Canberra, Australia.Google Scholar
Appleton, C.C. & Gouws, E. (1996) The distribution of common intestinal nematodes along an altitudinal transect in KwaZulu-Natal, South Africa. Annals of Tropical Medicine and Parasitology 90, 181188.CrossRefGoogle ScholarPubMed
Areekul, S. & Radomyos, P. (1970) Preliminary report of Raillietina sp. infection in man and rats in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 1, 559.Google Scholar
Behnke, J.M., Barnard, C.J., Bajer, A., Bray, D., Dinmore, J., Frake, K., Osmond, J., Race, T. & Siński, E. (2001) Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401414.Google Scholar
Behnke, J.M., Bajer, A., Harris, P.D., Newington, L., Pidgeon, E., Rowlands, G., Sheriff, C., Kuliś-Malkowska, K., Siński, E., Gilbert, F.S. & Barnard, C.J. (2008) Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 2 The infracommunity level. Parasitology 135, 9991018.Google Scholar
Belizario, V.Y., Geronilla, G.G., Anastacio, M.B., de Leon, W.U., Suba-an, A.P., Sebastian, A.C. & Bangs, M.J. (2007) Echinostoma malayanum infection, the Philippines. Emerging Infectious Diseases 7, 11301131.Google Scholar
Bordes, F., Morand, S., Krasnov, B.R. & Poulin, R. (2010) Parasite diversity and latitudinal gradients in terrestrial mammals. pp. 8998 in Morand, S. & Krasnov, B.R. (Eds) The biogeography of host–parasite interactions. Oxford, Oxford University Press.Google Scholar
Bordes, F., Guégan, J.F. & Morand, S. (2011) Microparasite species richness in rodents is higher at lower latitudes and is associated with reduced litter size. Oikos 120, 18891896.Google Scholar
Chaisiri, K., Chaeychomsri, W., Siruntawineti, J., Ribas, A., Herbreteau, V. & Morand, S. (2010) Gastrointestinal helminth infections in Asian house rats (Rattus tanezumi) from northern and northeastern Thailand. Journal of Tropical Medicine and Parasitology 39, 2935.Google Scholar
Chaisiri, K., Chaeychomsri, W., Siruntawineti, J., Ribas, A., Herbreteau, V. & Morand, S. (2012) Diversity of gastrointestinal helminths among murid rodents from northern and northeastern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 43, 2128.Google Scholar
Chenchittikul, M., Daengpium, S., Hasegawa, M., Itoh, T. & Phanthumachinda, B. (1983) A study of commensal rodents and shrews with reference to the parasites of medical importance in Chanthaburi province, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 14, 255259.Google Scholar
Chero, J.C., Saito, M., Bustos, J.A., Blanco, E.M., Gonzalves, G. & Garcia, H.H. (2007) Hymenolepis nana infection: symptoms and response to nitazoxanide in field conditions. Transaction of the Royal Society of Tropical Medicine and Hygiene 101, 203205.Google Scholar
Claveria, F.G., Causapin, J., Guzman, M.A., Toledo, M.G. & Salibay, C. (2005) Parasite biodiversity in Rattus spp. caught in wet markets. Southeast Asian Journal of Tropical Medicine and Public Health 36, 146148.Google Scholar
Corbet, G. & Hill, J. (1992) The mammals of the Indomalayan region: a systematic review. New York, Oxford University Press.Google Scholar
Folstad, I. & Karter, A.J. (1992) Parasites, bright males and the immunocompetence handicap. American Naturalist 139, 603622.CrossRefGoogle Scholar
Froeschke, G., Harf, R., Sommer, S. & Matthee, S. (2010) Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa – implications for possible shifts in infestation patterns due to global changes. Oikos 119, 10291039.CrossRefGoogle Scholar
Herbreteau, V., Jittapalapong, S., Rerkamnuaychoke, W., Chaval, Y., Cosson, J.F. & Morand, S. (2011) Protocols for field and laboratory rodent studies. Bangkok, Thailand, Kasetsart University Press.Google Scholar
Ivanova, S., Herbreteau, V., Blasdell, K., Chaval, Y., Buchy, P., Guillard, B. & Morand, S. (2012) Leptospira and rodents in Cambodia: environmental determinants of infection. American Journal of Tropical Medicine and Hygiene 86, 10321038.CrossRefGoogle ScholarPubMed
Ivoke, N. (2009) Studies on the seasonal variations and prevalence of helminth fauna of the black rat, Rattus rattus (L) (Rodentia: Muridae) from different microhabitats in Nsukka, Nigeria. Animal Research International 6, 10631071.Google Scholar
Jittapalapong, S., Inpankaew, T., Sarataphan, N., Herbreteau, V., Hugot, J.P., Morand, S. & Stich, R.W. (2010) Molecular detection of divergent trypanosomes among rodents of Thailand. Infection Genetics and Evolution 8, 445449.CrossRefGoogle Scholar
Kataranovski, D.S., Vukicevic-Radic, O.D., Kataranovski, M.V., Radovic, D.L. & Mirkov, I.I. (2008) Helminth fauna of Mus musculus Linnaeus, 1758 from the suburban area of Belgrade, Serbia. Archives of Biological Science Belgrade 60, 609617.Google Scholar
Krasnov, B.R., Shenbrot, G.I., Khokhlova, I.S. & Degen, A.A. (2004) Flea species richness and parameters of host body, host geography and host ‘milieu’. Journal of Animal Ecology 73, 11211128.Google Scholar
Krivolutsky, D.A., Ki, N.T. & Viet, F.T. (1991) On the fauna of orbatid mites and Anoplocephalans, helminths of domestic and wild animals in Vietnam. Parazitologiya 25, 468469.Google Scholar
Lafferty, K.D. & Kuris, K.M. (1999) Parasitism and environmental disturbances. pp. 113123 in Thomas, F., Renaud, F. & Guegan, J.F. (Eds) Parasitism and ecosystems. New York, Oxford University Press.Google Scholar
Lutermann, H. & Bennett, N.C. (2012) Determinants of helminth infection in a subterranean rodent, the Cape dune mole-rat (Bathyergus suillus). Journal of Parasitology 98, 686689.CrossRefGoogle Scholar
Maji, A.K., Bera, D.K., Manna, B., Nandy, A., Addy, M. & Bandyopadhyay, A.K. (1993) First record of human infection with Echinostoma malayanum in India. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 673.Google Scholar
Marangi, M., Zechini, B., Fileti, A., Quaranta, G. & Aceti, A. (2003) Hymenolepis diminuta infection in a child living in the urban area of Rome, Italy. Journal of Clinical Microbiology 41, 39943995.Google Scholar
Marshall, J.T. (1988) Family Muridae: rats and mice. pp. 397487 in Lekagul, B. & McNeely, J.A. (Eds) Mammals of Thailand. Bangkok, Association for the Conservation of Wildlife.Google Scholar
Milazzo, C., Cagnin, M., Di Bella, C., Geraci, F. & Ribas, A. (2010) Helminth fauna of commensal rodents, Mus musculus (Linnaeus, 1758) and Rattus rattus (Linnaeus, 1758) (Rodentia, Muridae) in Sicily (Italy). Revista Ibero-Latinoamericana de Parasitología 69, 194198.Google Scholar
Mohd Zain, S.N., Behnke, J.M. & Lewis, J.W. (2012) Helminth communities from two urban rat populations in Kuala Lumpur, Malaysia. Parasites and Vectors 5, 47.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858.Google Scholar
Nama, H.S. (1990) An overview of the tapeworm genus Hymenolepis Weinland, 1958 sensu lato from arid and non-arid regions. Scientific Reviews on Arid Zone Research 7, 180.Google Scholar
Namue, C. & Wongsawad, C. (1997) Survey of helminth infection in rats (Rattus spp.) from Chiang Mai moat. Southeast Asian Journal of Tropical Medicine and Public Health 28, 179183.Google Scholar
O'Connor, L.J., Kahn, L.P. & Walkden-Brown, S.W. (2007) Moisture requirements for the free living development of Haemonchus contortus: quantitative and temporal effects under conditions of low evaporation. Veterinary Parasitology 150, 128138.CrossRefGoogle ScholarPubMed
Patz, J.A., Graczyk, T.K., Geller, N. & Vittor, A.Y. (2000) Effects of environmental change on emerging parasitic diseases. International Journal of Parasitology 30, 13951405.Google Scholar
Poulin, R. (1996) Helminth growth in vertebrate hosts: Does host sex matter? International Journal of Parasitology 26, 13111315.Google Scholar
Pradatsundarsar, A. (1968) Nine cases of Raillietina sp. in Bangkok. Journal of the Medical Association of Thailand 43, 56.Google Scholar
Ribas, A., Veciana, M., Chaisiri, K. & Morand, S. (2012) Protospirura siamensis n. sp. (Nematode: Spiruridae) from rodents in Thailand. Systematic Parasitology 82, 2127.Google Scholar
Rozsa, L., Reiczigel, J. & Majoros, G. (2000) Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.Google Scholar
Schmidt, G.D. (1986) Handbook of tapeworm identification. Boca Raton, Florida, CRC Press Inc.Google Scholar
Sinniah, B. (1979) Parasites of some rodents in Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 10, 115121.Google Scholar
Skrjabin, K.I., Shikhobalova, N.P. & Orlov, I.V. (1970) Trichocephalidae and Capillariidae of animals and man and the diseases caused by them. Helminthological Laboratory, Academy of Sciences of the USSR, Keter Press Binding; Jerusalem, Weiner Bindery Ltd.Google Scholar
Smales, L.R. (2010) The gastrointestinal helminths of Lorentzimys nouhuysi (Rodentia: muridae) with descriptions of two new genera and three new species (Nematoda) from Papua New Guinea. Journal of Parasitology 96, 602613.Google Scholar
Sthongmanivong, S., Fujita, Y., Phanvilay, K. & Vongvisouk, T. (2009) Agrarian land use transformation in northern Laos: from swidden to rubber. Southeast Asian Studies 47, 330347.Google Scholar
Tena, D., Simon, M.P., Gimeno, C., Pomata, M.T., Illescas, S., Amondarain, I., González, A., Domínguez, J. & Bisquert, J. (1998) Human infection with Hymenolepis diminuta: case report from Spain. Journal of Clinical Microbiology 36, 23752376.Google Scholar
Tsuchiya, H. & Rohlfing, E.H. (1932) Hymenolepis nana report of additional cases and an experimental transmission from man to rats. Archives of Pediatrics and Adolescent Medicine 43, 865872.Google Scholar
Tubangui, M.A. (1931) Trematode parasites of Philippine vertebrates, II: Two Echinostome flukes from rats. Philippine Journal of Science 44, 273.Google Scholar
Udonsi, J.K. (1989) Helminth parasites of wild populations of the black rat, Rattus rattus (L.), from urban, rural residential and other ecological areas of Nigeria. Acta Parasitologica Polonica 34, 107116.Google Scholar
Wilson, D.E. & Reeder, D.M. (2005) Mammal species of the world. 3rd edn. Baltimore, Johns Hopkins University Press.Google Scholar
Wiroreno, W. (1978) Nematode parasites of rats in west Java, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health 9, 520525.Google Scholar
Yamaguti, S. (1958) The Digenetic trematodes of vertebrates part I: Volume I. pp. 800972 in Yamaguti, S. (Ed.) Systema Helminthum. New York, Interscience.Google Scholar
Zuk, M. & McKean, K.A. (1996) Sex differences in parasite infections: patterns and processes. International Journal of Parasitology 26, 10091024.Google Scholar