Hostname: page-component-cb9f654ff-h4f6x Total loading time: 0 Render date: 2025-08-05T04:53:16.668Z Has data issue: false hasContentIssue false

Life cycles of trematodes infecting six species of intertidal gastropods in Japan

Published online by Cambridge University Press:  22 July 2025

E. Ansai
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
H. Sekine
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
K. Munakata
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
T. Sase
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
M. Sasaki
Affiliation:
Department of Veterinary Medicine, https://ror.org/02t9fsj94Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
M. Nitta
Affiliation:
Pathology Division, Nansei Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Minami-Ise, Watarai, Mie 516-0193, Japan
S. Suzuki
Affiliation:
Minamisanriku Nature Center, 69-2 Aza-Okita, Togura, Minamisanriku, Motoyoshi, Miyagi 986-0781, Japan
T. Abe
Affiliation:
Minamisanriku Nature Center, 69-2 Aza-Okita, Togura, Minamisanriku, Motoyoshi, Miyagi 986-0781, Japan
T. Takano
Affiliation:
Meguro Parasitological Museum, 4-1-1 Shimomeguro, Meguro, Tokyo 153-0064, Japan
H. Fukumori
Affiliation:
Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
Y. Nakatsubata
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
M. Suzuki
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
T. Waki*
Affiliation:
Faculty of Science, https://ror.org/02hcx7n63Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
*
Corresponding author: T. Waki; Email: tsukasa.waki@sci.toho-u.ac.jp

Abstract

A variety of larvae and parthenitae of trematodes have been detected in gastropods in the intertidal zone in Japan. However, because of the difficulty associated with the morphological identification of these stages, they have rarely been identified to the species or higher taxonomic levels. In this study, trematodes of these stages were sampled from intertidal gastropods in the Japanese coastal regions and were identified to the species, genus, or family levels morphologically and molecularly to elucidate or predict their life cycles. Investigation of 17 gastropod species (682 individuals in total) from 14 localities led to the detection of trematodes in 47 individuals belonging to six snail species. The infected gastropods were morphologically identified as Nipponacmea fuscoviridis, Monodonta confusa, Trochus sacellum, Batillaria attramentaria, Littorina brevicula, and Purpuradusta gracilis. Our molecular analyses revealed that sporocysts, rediae, and metacercariae from the gastropods were divided into 14 species belonging to nine families: Philophthalmidae, Fellodistomidae, Gymnophallidae, Lepocreadiidae, Heterophyidae, Opisthorchiidae, Notocotylidae, Microphallidae, and Opecoelidae. These trematodes were thought to use fishes, octopuses, seabirds, and marine mammals as their definitive hosts. Marine organisms such as jellyfishes, crustaceans, and fishes are also thought to act as the second intermediate and paratenic hosts of few present trematode species. As for the other trematode species, DNA barcodes of trematodes from various marine organisms will also illuminate the life cycles in future.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bearup, AJ (1961) Observations on the life cycle of Stictodora lari (Trematoda: Heterophyidae). Proceedings of the Linnean Society of New South Wales 136, 251257.Google Scholar
Bowles, J, Blair, D and McManus, DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54(2), 165173. https://doi.org/10.1016/0166-6851(92)90109-w.CrossRefGoogle ScholarPubMed
Bowles, J and McManus, DP (1993) Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology 57(2), 231239. https://doi.org/10.1016/0166-6851(93)90199-8.CrossRefGoogle ScholarPubMed
Bray, RA, Gibson, DI and Jones, A (2008) Keys to the Trematoda : Volume 3. Wallingford: CABI Publishing.Google Scholar
Carvajal, J, Durán, LE and George-Nascimento, M (1983) Ogmogaster heptalineatus n. sp. (Trematoda: Notocotylidae) from the Chilean sea lion Otaria flavescens. Systematic Parasitology 5(3), 169173. https://doi.org/10.1007/BF00009349.CrossRefGoogle Scholar
Chai, JY, Park, SK, Hong, SJ, Choi, MH and Lee, SH (1989) Identification of Stictodora lari (Heterophyidae) metacercariae encysted in the brackish water fish, Acanthogobius flavimanus. The Korean Journal of Parasitology 27(4), 253259. https://doi.org/10.3347/kjp.1989.27.4.253.CrossRefGoogle ScholarPubMed
Cribb, TH, Cutmore, SC, Wee, NQX, Browne, JG, Morales, PD and Pitt, KA (2024) Lepocreadiidae (Trematoda) associated with gelatinous zooplankton (Cnidaria and Ctenophora) and fishes in Australian and Japanese waters. Parasitology International 101, 102890.10.1016/j.parint.2024.102890CrossRefGoogle ScholarPubMed
Dawes, B (1956) The Trematoda with Special Reference to British and Other European Forms. Cambridge: Cambridge University Press.Google Scholar
Dronen, NO, Blend, CK, Gardner, SL and Jiménez, FA (2007) Stictodora cablei n. sp. (Digenea: Heterophyidae) from the royal tern, Sterna maxima (Laridae: Sterninae) from Puerto Rico and the Brazos County area of the Texas Gulf coast, USA, with a list of other endohelminths recovered in Texas. Zootaxa 1432(1), 3556. https://doi.org/10.11646/zootaxa.1432.1.3.CrossRefGoogle Scholar
Duflot, M, Gay, M, Midelet, G, Kania, PW and Buchmann, K (2021) Morphological and molecular identification of Cryptocotyle lingua metacercariae isolated from Atlantic cod (Gadus morhua) from Danish seas and whiting (Merlangius merlangus) from the English Channel. Parasitology Research 120(10), 34173427.10.1007/s00436-021-07278-6CrossRefGoogle ScholarPubMed
Galaktionov, KV, Gonchar, A, Postanogova, D, Miroliubov, A and Bodrov, SY (2024) Parvatrema spp. (Digenea, Gymnophallidae) with parthenogenetic metacercariae: Diversity, distribution and host specificity in the palaearctic. International Journal for Parasitology 54(7), 333355.Google ScholarPubMed
Gibson, DI, Jones, A and Bray, RA (2002) Keys to the Trematoda : Volume 1. Wallingford: CABI Publishing.10.1079/9780851995472.0000CrossRefGoogle Scholar
Habe, T and Kosuge, S (1967) The Standard Book of Japanese Shells in Color : Volume III. Osaka: Hoikusha.Google Scholar
Hall, TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hill-Spanik, KM, Sams, C, Connors, VA, Bricker, T and de Buron, I (2021) Molecular data reshape our understanding of the life cycles of three digeneans (Monorchiidae and Gymnophallidae) infecting the bivalve, Donax variabilis: It’s just a facultative host! Parasite 28, 34.10.1051/parasite/2021027CrossRefGoogle ScholarPubMed
Iijima, A (2001) Growth of the intertidal snail, Monodonta labio (Gastropoda, Prosobranchia) on the Pacific coast of central Japan. Bulletin of Marine Science 68(1), 2736.Google Scholar
Izumi, S, Akiyama, N, Suzumura, Y and Ogawa, K (2021) Infection of a species of digenean in common octopus Octopus sinensis in Japan. Fish Pathology 56(4), 199204. https://doi.org/10.3147/jsfp.56.199.CrossRefGoogle Scholar
Benthology, Japanese Association (2020) Coastal Maine Ecology: Lessons from the Diversity of Benthic Animals. Tokyo: Kaibundo Publishing Co. Ltd.Google Scholar
Jones, A, Bray, RA and Gibson, DI (2005) Keys to the Trematoda: Volume 2. Wallingford: CABI Publishing.Google Scholar
Jousson, O, Bartoli, P and Pawlowski, J (1999) Molecular identification of developmental stages in Opecoelidae (Digenea). International Journal for Parasitology 29(11), 18531858. https://doi.org/10.1016/S0020-7519(99)00124-1.CrossRefGoogle ScholarPubMed
Kakui, K (2022) Digenean metacercariae parasitic in a staurozoan cnidarian. Zoological Science 39(2), 215218. https://doi.org/10.2108/zs210099.CrossRefGoogle Scholar
Køie, M (1977) Stereoscan studies of cercariae, metacercariae, and adults of Cryptocotyle lingua (Creplin 1825) Fischoeder 1903 (Trematoda: Heterophyidae). The Journal of Parasitology 63(5), 835839.10.2307/3279888CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6), 15471549.10.1093/molbev/msy096CrossRefGoogle ScholarPubMed
Kuris, AM, Hechinger, RF, Shaw, JC, Whitney, KL, Aguirre-Macedo, L, Boch, CA, Dobson, AP, Dunham, EJ, Fredensborg, BL, Huspeni, TC, Lorda, J, Mababa, L, Mancini, FT, Mora, AB, Pickering, M, Talhouk, NL, Torchin, ME and Lafferty, KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454(7203), 515518. https://doi.org/10.1038/nature06970.CrossRefGoogle ScholarPubMed
Lamb, PD, Hunter, E, Pinnegar, JK, van der Kooij, J, Creer, S and Taylor, MI (2019) Cryptic diets of forage fish: Jellyfish consumption observed in the Celtic Sea and western English Channel. Journal of Fish Biology 94(6), 10261032. https://doi.org/10.1111/jfb.13926.CrossRefGoogle ScholarPubMed
Leonov, VA (1957) New Trematodes of Fish-Eating Birds: Volume 19. Uchenye Zapiski Gorskovskogo Gosudarstvenngo Pedagogicheskogo Institute, 4352. (in Russian)Google Scholar
Littlewood, DTJ and Bray, RA (eds) (2014) Interrelationships of the Platyhelminthes. London: CRC Press.10.1201/9781482268218CrossRefGoogle Scholar
Littlewood, DTJ, Curini-Galletti, M and Herniou, EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution 16(3), 449466. https://doi.org/10.1006/mpev.2000.0802.CrossRefGoogle ScholarPubMed
Lockyer, AE, Olson, PD, Østergaard, P, Rollinson, D, Johnston, DA, Attwood, SW, Southgate, VR, Horak, P, Snyder, SD, Le, TH, Agatsuma, T, DP, McManus, Carmichael, AC, Naem, S and Littlewood, DTJ (2003) The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126(3), 203224. https://doi.org/10.1017/S0031182002002792.CrossRefGoogle ScholarPubMed
Louvard, C, Yong, RQY, Cutmore, SC and Cribb, TH (2024) The oceanic pleuston community as a potentially crucial life-cycle pathway for pelagic fish-infecting parasitic worms. International Journal for Parasitology 54(6), 267278. https://doi.org/10.1016/j.ijpara.2023.11.001.CrossRefGoogle ScholarPubMed
Machida, M and Kuramochi, T (1999) Digenean trematodes from tetraodontiform fishes from Japanese and adjacent waters. Bulletin of the National Science Museum. Series A, Zoology 25, 125.Google Scholar
Madhavi, R and Bray, RA (2018) Digenetic Trematodes of Indian Marine Fishes. Berlin: Springer. https://doi.org/10.1007/978-94-024-1535-3_20.CrossRefGoogle Scholar
Malatesta, T, Frati, R, Cerioni, S, Agrimi, U and Di Guardo, G (1998) Ogmogaster antarcticus Johnston, 1931 (Digenea: Notocotylidae) in Balaenoptera physalus (L.): first record in the Mediterranean Sea. Systematic Parasitology 40(1), 6366. https://doi.org/10.1023/A:1005955200911.CrossRefGoogle Scholar
Martin, SB, Ribu, D, Cutmore, SC and Cribb, TH (2018) Opistholobetines (Digenea: Opecoelidae) in Australian tetraodontiform fishes. Systematic Parasitology 95(8), 743781.10.1007/s11230-018-9826-9CrossRefGoogle ScholarPubMed
Martin, SB, Downie, AJ and Cribb, TH (2020) A new subfamily for a clade of opecoelids (Trematoda: Digenea) exploiting marine fishes as second-intermediate hosts, with the first report of opecoelid metacercariae from an elasmobranch. Zoological Journal of the Linnean Society 188(2), 455472. https://doi.org/10.1093/zoolinnean/zlz084.Google Scholar
Martorelli, SR, Fredensborg, BL, Mouritsen, KN and Poulin, R (2004) Description and proposed life cycle of Maritrema novaezealandensis n. sp. (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. Journal of Parasitology 90(2), 272277. https://doi.org/10.1645/GE-3254.CrossRefGoogle Scholar
Miura, O, Kuris, AM, Torchin, ME, Hechinger, RF, Dunham, EJ and Chiba, S (2005) Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology 35(7), 793801. https://doi.org/10.1016/j.ijpara.2005.02.014.CrossRefGoogle ScholarPubMed
Miura, O, Kuris, AM, Torchin, ME, Hechinger, RF and Chiba, S (2006) Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proceedings of the Royal Society B: Biological Sciences 273(1592), 13231328.10.1098/rspb.2005.3451CrossRefGoogle ScholarPubMed
Morozov, FN (1952) Trematode superfamily Heterophyoidea Faust, 1929. In Skriabin, KI (ed), Trematodes of Animals and Humans. Fundamentals of Trematodology, vol. 6. Moscow: Academy of Sciences of the USSR, 152615. (In Russian)Google Scholar
Nakao, M, Waki, T, Sasaki, M, Anders, JL, Koga, D and Asakawa, M (2017) Brachylaima ezohelicis sp. nov. (Trematoda: Brachylaimidae) found from the land snail Ezohelix gainesi, with a note of an unidentified Brachylaima species in Hokkaido, Japan. Parasitology International 66(3), 240249.10.1016/j.parint.2017.01.015CrossRefGoogle ScholarPubMed
Nakao, M and Sasaki, M (2021) Trematode diversity in freshwater snails from a stopover point for migratory waterfowls in Hokkaido, Japan: An assessment by molecular phylogenetic and population genetic analyses. Parasitology International 83, 102329. https://doi.org/10.1016/j.parint.2021.102329.CrossRefGoogle ScholarPubMed
Nekrasov, AV, Pronin, NM, Sanzhieva, SD and Timoshenko, TM (1999) Diversity of helminth fauna in the herring gull (Larus argentatus) from the Baikal Lake: Peculiarities of spatial distribution and invasion. Parazitologiya 33(5), 426436.Google Scholar
Niewiadomska, K and Pojmanska, T (2011) Multiple strategies of digenean trematodes to complete their life cycles. Wiadomości Parazytologiczne 57(4), 233241.Google Scholar
Ogawa, K and Inouye, K (1997) Parasites of cultured tiger puffer (Takifugu rubripes) and their seasonal occurrences, with descriptions of two new species of Gyrodactylus. Fish Pathology 32(1), 714.10.3147/jsfp.32.7CrossRefGoogle Scholar
Ohgushi, R (1956) On the so-called ‘habitat segregation’ phenomena seen between two species of Japanese periwinkles. Japanese Journal of Ecology 6(1), 912. https://doi.org/10.18960/seitai.6.1_9.Google Scholar
Okutani, T (2017) Marine Mollusks in Japan, the Second Edition. Hiratsuka: Tokai University Press.Google Scholar
Oliva, ME, Valdivia, IM, Cárdenas, L, Muñoz, G, Escribano, R and George-Nascimento, M (2018) A new species of Proctoeces and reinstatement of Proctoeces humboldti George-Nascimento and Quiroga 1983 (Digenea: Fellodistomidae) based on molecular and morphological evidence. Parasitology International 67(2), 159169. https://doi.org/10.1016/j.parint.2017.10.004.CrossRefGoogle ScholarPubMed
Olsen, OW (1986) Animal Parasites: Their Life Cycles and Ecology. New York: Dover.Google Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33(7), 733755. https://doi.org/10.1016/S0020-7519(03)00049-3.CrossRefGoogle ScholarPubMed
Poulin, R and Cribb, TH (2002) Trematode life cycles: Short is sweet? Trends in Parasitology 18(4), 176183.10.1016/S1471-4922(02)02262-6CrossRefGoogle ScholarPubMed
Sasaki, M, Miura, O and Nakao, M (2022) Philophthalmus hechingeri n. sp. (Digenea: Philophthalmidae), a human-infecting eye fluke from the Asian mud snail, Batillaria attramentaria. Journal of Parasitology 108(1), 4452. https://doi.org/10.1645/21-69.CrossRefGoogle Scholar
Sato, C, Sasaki, M, Nabeta, H, Tomioka, M, Uga, S and Nakao, M (2019) A philophthalmid eyefluke from a human in Japan. Journal of Parasitology 105(4), 619623. https://doi.org/10.1645/19-53.CrossRefGoogle ScholarPubMed
Seo, H, Ansai, E, Sase, T, Saito, T, Takano, T, Kojima, Y and Waki, T (2024) Introduction of a snake trematode of the genus Ochetosoma in eastern Japan. Parasitology International 103, 102947. https://doi.org/10.1016/j.parint.2024.102947.CrossRefGoogle ScholarPubMed
Shimura, S, Yoshinaga, T and Wakabayashi, H (1982) Three marine cercariae in the clam Tapes philippinarum from Lake Hamana, Japan: Morphology and level of infection. Fish Pathology 17(2), 129137.10.3147/jsfp.17.129CrossRefGoogle Scholar
Stunkard, HW (1930) The life history of Cryptocotyle lingua (Creplin), with notes on the physiology of the metacercariae. Journal of Morphology 50(1), 143191.10.1002/jmor.1050500106CrossRefGoogle Scholar
Takano, T and Kano, Y (2014) Molecular phylogenetic investigations of the relationships of the echinoderm-parasite family Eulimidae within Hypsogastropoda (Mollusca). Molecular Phylogenetics and Evolution 79, 258269. https://doi.org/10.1016/j.ympev.2014.06.021.CrossRefGoogle ScholarPubMed
Tkach, VV, Kudlai, O and Kostadinova, A (2016) Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology 46(3), 171185. https://doi.org/10.1016/j.ijpara.2015.11.001.CrossRefGoogle ScholarPubMed
Tkach, VV, Littlewood, DTJ, Olson, PD, Kinsella, JM and Swiderski, Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology 56(1), 115.10.1023/A:1025546001611CrossRefGoogle ScholarPubMed
Tolstenkov, O, Chatzigeorgiou, M and Gorbushin, A (2023) Neuronal gene expression in two generations of the marine parasitic worm, Cryptocotyle lingua. Communications Biology 6(1), 1279.10.1038/s42003-023-05675-4CrossRefGoogle ScholarPubMed
Tomiyama, T (2021) Feeding and growth of coastal fishes: examples on flatfishes. Nippon Suisan Gakkaishi 87(3), 221224. https://doi.org/10.2331/suisan.WA2823.CrossRefGoogle Scholar
Waki, T, Hoso, M, Nitta, M, Seo, H and Urabe, M (2024) A new species of the genus Paradistomum (Platyhelminthes: Trematoda) from Iwasaki’s snail-eating snake Pareas iwasakii, with a note on morphological variations of Paradistomum megareceptaculum (Tamura, 1941). Systematic Parasitology 101(3), 41. https://doi.org/10.1007/s11230-024-10164-1.CrossRefGoogle ScholarPubMed
Waki, T, Nakao, M, Sasaki, M, Ikezawa, H, Inoue, K, Ohari, Y, Kameda, Y, Asada, M, Furusawa, H and Miyazaki, S (2022) Brachylaima phaedusae n. sp. (Trematoda: Brachylaimidae) from door snails in Japan. Parasitology International 86, 102469. https://doi.org/10.1016/j.parint.2021.102469.CrossRefGoogle Scholar
Wee, NQX, Cribb, TH, Bray, RA and Cutmore, SC (2017) Two known and one new species of Proctoeces from Australian teleosts: Variable host-specificity for closely related species identified through multi-locus molecular data. Parasitology International 66(2), 1626. https://doi.org/10.1016/j.parint.2016.11.008.CrossRefGoogle ScholarPubMed
Weller, MW (1999) Wetland Birds: Habitat Resources and Conservation Implications. Cambridge: Cambridge University Press.10.1017/CBO9780511541919CrossRefGoogle Scholar
West, AF (1961) Studies on the biology of Philophthalmus gralli Mathis and Leger, 1910 (Trematoda: Digenea). American Midland Naturalist 66(2), 363383. https://doi.org/10.2307/2423036.CrossRefGoogle Scholar
Williams, ST and Ozawa, T (2006) Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda). Molecular Phylogenetics and Evolution 39(1), 3351. https://doi.org/10.1016/j.ympev.2005.12.017.CrossRefGoogle ScholarPubMed
Williams, ST, Reid, DG and Littlewood, DTJ (2003) A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): Unequal evolutionary rates, morphological parallelism, and biogeography of the Southern Ocean. Molecular Phylogenetics and Evolution 28(1), 6086. https://doi.org/10.1016/S1055-7903(03)00038-1.CrossRefGoogle ScholarPubMed
Willey, CH and Stunkard, HW (1942) Studies on pathology and resistance in terns and dogs infected with the heterophyid trematode, Cryptocotyle lingua. Transactions of the American Microscopical Society 61(3), 236253.10.2307/3222594CrossRefGoogle Scholar
Yamaguti, S (1938) Studies on the Helminth Fauna of Japan. Part 21. Trematodes of Fishes, IV. The author.Google Scholar
Yamaguti, S (1939) Studies on the helminth fauna of Japan. Part 25. Trematodes of birds, IV. Japanese Journal of Zoology 8, 129210.Google Scholar
Yamaguti, S (1959) Studies on the helminth fauna of Japan Part 54. Trematodes of fishes, XIII. Publications of the Seto Marine Biological Laboratory 7(2), 241262.10.5134/174607CrossRefGoogle Scholar
Yamaguti, S (1975) A Synoptical Review of Life Histories of Digenetic Trematodes of Vertebrates with Special Reference to the Morphology of Their Larval Forms. Tokyo: Keigaku Publishing Company.Google Scholar
Yoshimura, K (1965) On the trematode species Phocitrema fusiforme Goto and Ozaki, 1930 and Cryptocotyle lingua (Creplin, 1825). Japanese Journal of Veterinary Research 13(2), 1517.Google ScholarPubMed
Supplementary material: File

Ansai et al. supplementary material

Ansai et al. supplementary material
Download Ansai et al. supplementary material(File)
File 173.3 KB