Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T10:30:43.965Z Has data issue: false hasContentIssue false

Molecular identification of Austrobilharzia species parasitizing Cerithidea cingulata (Gastropoda: Potamididae) from Kuwait Bay

Published online by Cambridge University Press:  12 December 2011

W.Y. Al-Kandari*
Affiliation:
Department of Biological Sciences, Faculty of Science, Kuwait University
S.A. Al-Bustan
Affiliation:
Department of Biological Sciences, Faculty of Science, Kuwait University
A.M. Isaac
Affiliation:
Department of Biological Sciences, Faculty of Science, Kuwait University
B.A. George
Affiliation:
Department of Biological Sciences, Faculty of Science, Kuwait University
B.S. Chandy
Affiliation:
Department of Biological Sciences, Faculty of Science, Kuwait University
*
*Fax: (965) 24847054 E-mail: wafa.alkandari@ku.edu.kw

Abstract

Avian schistosomes belonging to the genus Austrobilharzia (Digenea: Schistosomatidae) are among the causative agents of cercarial dermatitis in humans. In this paper, ribosomal and mitochondrial DNA sequences were used to study schistosome cercariae from Kuwait Bay that have been identified morphologically as Austrobilharzia sp. Sequence comparison of the ribosomal DNA (rDNA) 28S and 18S regions of the collected schistosome cercariae with corresponding sequences of other schistosomes in GenBank revealed high sequence similarity. This confirmed the morphological identification of schistosome cercariae from Kuwait Bay as belonging to the genus Austrobilharzia. The finding was further supported by the phylogenetic tree that was constructed based on the combined data set 18S-28S-mitochondrial cytochrome oxidase I (mtCO1) sequences in which Austrobilharzia sp. clustered with A. terrigalensis and A. variglandis. Sequence comparison of the Austrobilharzia sp. from Kuwait Bay with A. variglandis and A. terrigalensis based on mtCO1 showed a variation of 10% and 11%, respectively. Since the sequence variation in the mtCO1 was within the interspecific range among trematodes, it seems that the Austrobilharzia species from Kuwait Bay is different from the two species reported in GenBank, A. terrigalensis and A. variglandis.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Salam, J. & Sreelatha, B. (1998) A list of larval digenetic trematodes parasitizing some marine invertebrates of Kuwait Bay. Kuwait Journal of Science & Engineering 25, 409434.Google Scholar
Abdul-Salam, J. & Sreelatha, B. (2004) Description and surface topography of the cercaria of Austrobilharzia sp. (Digenea: Schistosomatidae). Parasitology International 53, 1121.CrossRefGoogle ScholarPubMed
Aldhoun, J.A., Kolárová, L., Horak, P. & Skirnisson, K. (2009) Bird schistosome diversity in Iceland: molecular evidence. Journal of Helminthology 83, 173180.CrossRefGoogle ScholarPubMed
Al-Kandari, W.Y. & Al-Bustan, S.A. (2010) Molecular identification of Probolocoryphe uca (Sarkisian, 1957) (Digenea: Microphallidae) from Kuwait Bay using ITS1 and ITS2 sequences. Parasitology Research 106, 11891195.CrossRefGoogle ScholarPubMed
Appleton, C.C. (1983) Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: infection in the definitive host, Larus novaehollandiae. International Journal for Parasitology 13, 249259.CrossRefGoogle ScholarPubMed
Arnold, H.L. & Bonnet, D. (1950) Swimmer's itch, its first appearance in Hawaii. Proceedings of Hawaiian Academy of Science 25, 4.Google Scholar
Barber, K.E. & Caira, J.N. (1995) Investigation of the life cycle and adult morphology of the avian blood fluke Austrobilharzia variglandis (Trematoda: Schistosomatidae) from Connecticut. Journal of Parasitology 81, 584592.CrossRefGoogle ScholarPubMed
Barber, K.E., Mkoji, G.M. & Loker, E.S. (2000) PCR-RFLP analysis of the ITS2 region to identify Schistosoma haematobium and S. bovis from Kenya. American Journal of Tropical Medicine and Hygiene 62, 434440.CrossRefGoogle Scholar
Barker, S.C., Blair, D., Cribb, T.H. & Tonion, K. (1993) Phylogenetic position of Heronimus mollis (Digenea): evidence from 18S ribosomal RNA. International Journal for Parasitology 23, 533536.CrossRefGoogle ScholarPubMed
Bearup, A.J. (1955) A schistosome larva from the marine snail Pyrazus australis as a cause of cercarial dermatitis of man. The Medical Journal of Australia 1, 955960.CrossRefGoogle Scholar
Bowles, J., Blair, D. & McManus, D.P. (1995) A molecular phylogeny of the genus Echinococcus. Parasitology 110, 317328.CrossRefGoogle ScholarPubMed
Brant, S.V. & Loker, S.E. (2009) Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. Journal of Parasitology 95, 941963.CrossRefGoogle ScholarPubMed
Brant, S.V., Morgan, J.A.T., Mkoji, G.M., Snyder, S.D., Rajapakse, J.R. & Loker, E.S. (2006) An approach to revealing blood fluke life cycles, taxonomy, and diversity: provision of key reference data including DNA sequence from single life cycle stages. Journal of Parasitology 92, 7788.CrossRefGoogle ScholarPubMed
Cable, R.M. (1956) Marine cercariae of Puerto Rico. Scientific survey of Puerto Rico and the Virgin Islands. The NewYork Academy of Science 16, 490577.Google Scholar
Chu, G. (1952) First report of the presence of a dermatitis-producing marine cercaria larval schistosome in Hawaii. Science 115, 151153.CrossRefGoogle Scholar
Chu, G. & Cuttress, C. (1954) Austrobilharzia variglandis (Miller and Northup, 1926), Penner, 1953, (Trematoda: Schistosomatidae) in Hawaii with notes on its biology. Journal of Parasitology 40, 515524.CrossRefGoogle ScholarPubMed
Dvorák, J., Vanacova, S., Hampl, V., Flegr, J. & Horák, P. (2002) Comparison of European Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology 124, 307313.CrossRefGoogle ScholarPubMed
Gentile, L., Picot, H., Bourdeau, P., Bardet, R., Kerjan, A., Piriou, M., Le Guennic, A., Bayssade-Dufour, C., Chabasse, D. & Mott, K.E. (1996) Cercarial dermatitis in Europe: a new public health problem. Bulletin of the World Health Organization 74, 159163.Google ScholarPubMed
Grodhaus, G. & Keh, B. (1958) The marine dermatitis producing cercaria of Austrobilharzia variglandis in California (Trematoda: Schistosomatidae). Journal of Parasitology 44, 633638.CrossRefGoogle ScholarPubMed
Haynes, P.R. (1979) Notes on the status and distribution of the birds of Kuwait. Newsletter of Ahmadi Natural History Field Study Group 20, 120.Google Scholar
Hertel, J., Hamburger, J., Haberl, B. & Haas, W. (2002) Detection of bird schistosomes in lakes by PCR and filter-hybridization. Experimental Parasitology 101, 5763.CrossRefGoogle ScholarPubMed
Heulsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle Scholar
Holliman, R.B. (1961) Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their superfamilies. Tulane Studies in Zoology and Botany 9, 274.Google Scholar
Kane, R.A. & Rollinson, D. (1994) Repetitive sequences in the ribosomal DNA internal transcribed spacer of Schistosoma haematobium, Schistosoma intercalatum, and Schistosoma mattheei. Molecular and Biochemical Parasitology 63, 153156.CrossRefGoogle ScholarPubMed
Karamian, H., Aldhoun, J., Maraghi, S., Hatam, G., Farhangmehr, B. & Sadjjadi, S. (2011) Parasitological and molecular study of the furcocercariae from Melanoides tuberculata as a probable agent of cercarial dermatitis. Parasitology Research 108, 955962.CrossRefGoogle Scholar
Kolárová, L. (2007) Schistosomes causing cercarial dermatitis: a mini-review of current trends in systematics and of host specificity and pathogenicity. Folia Parasitologica 54, 8187.CrossRefGoogle ScholarPubMed
Kumar, S., Dudley, J., Nei, M. & Tamura, K. (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299306.CrossRefGoogle Scholar
Leighton, B.J., Ratzlaff, D., McDougall, C., Stewart, G., Nadan, A. & Gustafson, L. (2004) Schistosome dermatitis at Crescent Beach, preliminary report. Environmental Health Review 48, 513.Google Scholar
Littlewood, D.T.J. & Olson, P.D. (2001) Small subunit rDNA and the phylum Platyhelminthes: signal, noise, conflict and compromise. pp. 262278in (Eds) Interrelationships of the Platyhelminthes. London, Taylor & Francis.Google Scholar
Liu, C.M. & Pai, K.M. (1974) On a new species of bird schistosome from Kirin Province – Austrobilharzia pulmonale. Acta Zoologica Sincia 20, 291296.Google Scholar
Lockyer, A.E., Olson, P.D., Østergaard, P., Rollinson, D., Johnston, D.A., Attwood, S.W., Southgate, V.R., Horak, P., Snyder, S.D., Le, T.H., Agatsuma, T.D., McManus, D.P., Carmichael, A.C., Naem, S. & Littlewood, D.T.J. (2003) The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland 1858. Parasitology 126, 203224.CrossRefGoogle ScholarPubMed
Loy, C. & Haas, W. (2001) Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in southern Germany. Parasitology Research 87, 878882.Google Scholar
Miller, H.M. & Northup, F.E. (1926) The seasonal infestation of Nassa obsolete (Say) with larval trematodes. The Biological Bulletin 50, 490508.CrossRefGoogle Scholar
Miura, O., Kuris, A., Torchin, M., Hechinger, R., Dunham, E. & Chiba, S. (2005) Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology 35, 793801.CrossRefGoogle ScholarPubMed
Nolan, M.J. & Cribb, T.H. (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology 60, 102163.Google ScholarPubMed
Penner, L.R. (1950) Cercaria littorinalinae sp. nov., a dermatitis-producing schistosome larva from the marine snail Littorina planaxis Phillippi. Journal of Parasitology 36, 466472.CrossRefGoogle Scholar
Rice, P., Longden, I. & Bleasby, A. (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics 16, 276277.CrossRefGoogle ScholarPubMed
Rohde, K. (1977) The bird schistosome Austrobilharzia terrigalensis from the Great Barrier Reef, Australia. Zeitschrift feur Parasitenkunde 52, 3951.CrossRefGoogle ScholarPubMed
Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Schell, S.C. (1985) Handbook of Trematodes of North America north of Mexico. 263 pp. Idaho, University of Idaho Press.Google Scholar
Short, R.B. & Holliman, R.B. (1961) Austrobilharzia penneri, a new schistosome from marine snails. Journal of Parasitology 47, 447452.CrossRefGoogle Scholar
Sindermann, C.J. (1960) Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678684.CrossRefGoogle Scholar
Snyder, S.D. (2004) Phylogeny and paraphyly among tetrapod blood flukes (Digenea: Schistosomatidae and Spirorchiidae). International Journal for Parasitology 34, 13851392.CrossRefGoogle ScholarPubMed
Snyder, S.D. & Loker, E.S. (2000) Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. Journal of Parasitology 86, 283288.CrossRefGoogle Scholar
Thompson, J., Higgins, D.G. & Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Vilas, R., Criscione, C.D. & Blouin, M.S. (2005) A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Wang, C.R., Li, L., Ni, H.B., Zhai, Y.Q., Chen, A.H., Chen, J. & Zhu, X.Q. (2009) Orientobilharzia turkestanicum is a member of Schistosoma genus based on phylogenetic analysis using ribosomal DNA sequences. Experimental Parasitology 121, 193197.CrossRefGoogle ScholarPubMed