Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-11T14:06:12.466Z Has data issue: false hasContentIssue false

Selected mitochondrial genes as species markers of the Arctic Contracaecum osculatum complex

Published online by Cambridge University Press:  13 July 2011

J. Dzido
Affiliation:
Department of Invertebrate Zoology, University of Gdansk, Poland
A. Kijewska
Affiliation:
Department of Genetics and Marine Biotechnology, Institute of Oceanology PAS, Sopot, Poland
J. Rokicki*
Affiliation:
Department of Invertebrate Zoology, University of Gdansk, Poland

Abstract

This study, aimed at testing the hypothesis that some mitochondrial genes can serve as species-specific markers, involved a comparison of the sequence variance of selected mitochondrial DNA genes of the Arctic Contracaecum osculatum species (C. osculatum A, C. osculatum B and C. osculatum C). We compared differences between five complete (ND2, CYTB, ND3, ND4L and ND6) and three partial (CO1, CO3 and ND5) protein-coding genes. The total length of the sequence of each of the 13 specimens was 4830 bp. The sample consisted of C. osculatum L3 larvae collected from Reinhardtius hippoglossoides and Gadus ogac from the Barents Sea and Davis Strait. The K2P distance values between the species ranged within 0.06–0.12, the intraspecific variability (0.01–0.03) proving 3–6 times lower. The lowest interspecific divergence was observed between C. osculatum A and C. osculatum B, whereas the highest intraspecific diversity was typical of C. osculatum C. Among the C. osculatum species studied, the highest nucleotide diversity was recorded in the CYTB, CO3 and ND5 genes. These genes may be useful in species identification of the very closely related Contracaecum sibling species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.J., Blouin, M.S. & Beech, R.N. (1998) Population biology of parasitic nematodes: applications of genetic markers. Advances in Parasitology 41, 219283.CrossRefGoogle ScholarPubMed
Cross, M.A., Collins, C., Campbell, N., Watts, P.C., Chubb, J.C., Cunningham, C.O., Hatfield, E.M.C. & MacKenzie, K. (2007) Levels of intra-host and temporal sequence variation in a large CO1 sub-units from Anisakis simplex sensu stricto (Rudolphi 1809) (Nematoda: Anisakidae): implications for fisheries management. Marine Biology 151, 695702.CrossRefGoogle Scholar
D'Amelio, S., Mathiopoulos, K., Santos, C.P., Pugachev, O.N., Webb, S., Picanco, M. & Paggi, L. (2000) Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase chain reaction based restriction fragment length polymorphism. Journal of Parasitology 30, 223226.Google ScholarPubMed
De Jong, Y., Van Der Wurff, A.G., Stam, W.T. & Olsen, J.L. (1998) Studies on Dasyaceae. 3. Towards a phylogeny of the Dasyaceae (Ceramiales, Rhodophyta), based on comparative rbcL gene sequences and morphology. European Journal of Phycology 33, 187201.CrossRefGoogle Scholar
Hu, M., D'Amelio, S., Zhu, X., Paggi, L. & Gasser, R. (2001) Mutation scanning for sequence variation in three mitochondrial DNA regions for members of the Contracaecum osculatum (Nematoda: Ascaridoidea) complex. Electrophoresis 22, 10691075.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Kijewska, A., Dzido, J. & Rokicki, J. (2009) Mitochondrial DNA of Anisakis simplex s.s. as a potential tool for differentiating populations. Journal of Parasitology 95, 13641370.CrossRefGoogle Scholar
Kim, K.H., Eom, K.S. & Park, J.K. (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. International Journal for Parasitology 36, 319328.CrossRefGoogle ScholarPubMed
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Mattiucci, S. & Nascetti, G. (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Advances in Parasitology 66, 47148.CrossRefGoogle ScholarPubMed
Mattiucci, S., Paoletti, M., Webb, S.C., Sardella, N., Timi, J.T., Berland, B. & Nascetti, G. (2008) Genetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Höst, 1932 (Nematoda: Anisakidae) from pinnipeds inferred from mitochondrial cox2 sequences, and congruence with allozyme data. Parasite 15, 408419.CrossRefGoogle ScholarPubMed
Nascetti, G., Cianchi, R., Mattiucci, S., D'Amelio, S., Orecchia, P., Paggi, L., Brattey, J., Berland, B., Smith, J.W. & Bullini, L. (1993) Three sibling species within Contracaecum osculatum (Nematoda, Ascaridida, Ascaridoidea) from the Atlantic Arctic-Boreal region: reproductive isolation and host preferences. International Journal for Parasitology 23, 105120.CrossRefGoogle ScholarPubMed
Orecchia, P., Mattiucci, S., D'Amelio, S., Paggi, L., Plotz, J., Cianchi, R., Nascetti, G., Arduino, P. & Bullini, L. (1994) Two new members in the Contracaecum osculatum complex (Nematoda, Ascaridoidea) from the Antarctic. International Journal for Parasitology 24, 367377.CrossRefGoogle ScholarPubMed
Pontes, T., D'Amelio, S., Costa, G. & Paggi, L. (2005) Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. Journal of Parasitology 91, 14301434.CrossRefGoogle ScholarPubMed
Tajima, F. (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585595.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 4 May [Epub ahead of print].CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Valentini, A., Mattiucci, S., Bondanelli, P., Webb, S.C., Mignucci-Giannone, A.A., Colom-Llavina, M.M. & Nascetti, G. (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. Journal of Parasitology 92, 156166.CrossRefGoogle ScholarPubMed
Zhang, Z., Li, J., Zhao, X.Q., Wang, J., Wong, G.K. & Yu, J. (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4, 259263.CrossRefGoogle ScholarPubMed
Zhu, X., Gasser, R.B., Podolska, M. & Chilton, N.B. (1998) Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. International Journal for Parasitology 28, 19111921.CrossRefGoogle ScholarPubMed
Zhu, X., D'Amelio, S., Paggi, L. & Gasser, R.B. (2000) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitology Research 86, 677683.CrossRefGoogle ScholarPubMed