Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-x64cq Total loading time: 0.338 Render date: 2022-05-17T12:31:26.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Cyclic homology, Serre's local factors and λ-operations

Published online by Cambridge University Press:  25 July 2014

Alain Connes
Affiliation:
Collège de France, 3 rue d'Ulm, Paris F-75005, France, I.H.E.S. and Ohio State University, alain@connes.org
Caterina Consani
Affiliation:
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, kc@math.jhu.edu
Get access

Abstract

We show that for a smooth, projective variety X defined over a number field K, cyclic homology with coefficients in the ring , provides the right theory to obtain, using λ-operations, Serre's archimedean local factors of the complex L-function of X as regularized determinants.

Type
Research Article
Copyright
Copyright © ISOPP 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Beilinson, A., Higher regulators and values of L-functions. (Russian) Current problems in mathematics 24, 181238. Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.Google Scholar
2.Bloch, S., Kato, K., L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift I, 333400, Progr. Math. 86, Birkhauser Boston, Boston, MA, 1990.Google Scholar
3.Connes, A., Spectral sequence and homology of currents for operator algebras, Mathematisches Forschunginstitut oberwolfach, Tagungsbericht 42/81.Google Scholar
4.Connes, A., Cohomologie cyclique etfoncteurs Extn. C. R. Acad. Sci. Paris Sér. I Math. 296(23) (1983), 953958.Google Scholar
5.Connes, A., Noncommutative differential geometry. Inst.Hautes Études Sci. Publ.Math. No. 62 (1985), 257360.CrossRefGoogle Scholar
6.Connes, A., Noncommutative geometry, Academic Press (1994).Google Scholar
7.Consani, C., Double complexes and Euler L-factors. Compositio Math. 111(3) (1998), 323358.CrossRefGoogle Scholar
8.Deligne, P., Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33 (1979) part II, 313346.CrossRefGoogle Scholar
9.Demazure, M., Gabriel, P., Groupes algébriques, Tome I. (French) Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970.Google Scholar
10.Deninger, C., On the Γ-factors attached to motives, Invent. Math. 104 (1991), 245261.CrossRefGoogle Scholar
11.Deninger, C., Motivic L-functions and regularized determinants. Motives (Seattle, WA, 1991), 707743, Proc. Sympos. Pure Math. 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
12.Feigin, B. and Tsygan, B., Additive K-theory, Lecture notes in Math. 1289, Springer-Verlag, 1987, 97209.Google Scholar
13.Gillman, L., Jerison, M., Rings of continuous functions. The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York 1960.CrossRefGoogle Scholar
14.Grothendieck, A., Produits tensoriels topologiques et espaces nuclaires. Mem. Am. Math. Soc. 16 (1955), 140 pp.Google Scholar
15.Grothendieck, A., On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95103.CrossRefGoogle Scholar
16.Görtz, U., Wedhorn, T., Algebraic Geometry I, Vieweg + Teubner (2010).CrossRefGoogle Scholar
17.Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York Heidelberg Berlin 1977.CrossRefGoogle Scholar
18.Hood, C., Jones, J., Some properties of cyclic homology groups, K-Theory 1 (1987), 361384.CrossRefGoogle Scholar
19.Karoubi, M., Homologie cyclique et K-théorie. (French) [Cyclic homology and K-theory] Astérisque 149 (1987), 147 pp.Google Scholar
20.Kontsevich, M., Solomon Lefschetz Memorial Lecture series: Hodge structures in non-commutative geometry. Notes by Ernesto Lupercio. Contemp. Math. 462, Noncommutative geometry in mathematics and physics 121, Amer. Math. Soc., Providence, RI, 2008.CrossRefGoogle Scholar
21.Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics 6. Oxford Science Publications. Oxford University Press, Oxford, 2002.Google Scholar
22.Loday, J.L., Quillen, D, Homologie cyclique et homologie de l'algèbre de Lie des matrices. (French) [Cyclic homology and homology of the Lie algebra of matrices] C. R. Acad. Sci. Paris Sr. I Math. 296(6) (1983), 295297.Google Scholar
23.Loday, J.L., Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301. Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar
24.Manin, Yu. I., Lectures on zeta functions and motives (according to Deninger and Kurokawa). Columbia University Number Theory Seminar (New York, 1992). Astérisque 228(4) (1995), 121-163.Google Scholar
25.Oesterlé, J., Nombres de Tamagawa et groupes unipotents. Invent. Math. 78 (1984), 1388.CrossRefGoogle Scholar
26.Rinehart, G., Differential forms on general commutative algebras. Trans. AMS 108 (1963), 195222.CrossRefGoogle Scholar
27.Ray, D.B., Singer, I.M., Analytic torsion for complex manifolds. Ann. Math. 98 (1973), 154177.CrossRefGoogle Scholar
28.Schneider, P., Introduction to the Beilinson conjectures. Beilinson's conjectures on special values of L-functions. 135, Perspect. Math. 4, Academic Press, Boston, MA, 1988.Google Scholar
29.Serre, J. P., Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Sém. Delange-Pisot-Poitou, exp. 19, 1969/1970.Google Scholar
30.Serre, J. P., Géométrie algébrique et géométrie analytique. (French) Ann. Inst. Fourier, Grenoble 6 (19551956), 142.CrossRefGoogle Scholar
31.Tsygan, B. L., Homology of matrix Lie algebras over rings and the Hochschild homology. (Russian) Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217218.Google Scholar
32.Weibel, C., An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge, 1994. xiv + 450 pp.CrossRefGoogle Scholar
33.Weibel, C., Cyclic Homology for schemes. Proc. Amer. Math. Soc. 124(6) (1996), 16551662.CrossRefGoogle Scholar
34.Weibel, C., The Hodge filtration and cyclic homology. K-Theory 12(2) (1997), 145164.CrossRefGoogle Scholar
35.Weibel, C., Geller, S., Etale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991), 368388.CrossRefGoogle Scholar
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cyclic homology, Serre's local factors and λ-operations
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cyclic homology, Serre's local factors and λ-operations
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cyclic homology, Serre's local factors and λ-operations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *