Skip to main content
×
×
Home

A Bloch-Wigner complex for SL2

  • Kevin Hutchinson (a1)
Abstract

We introduce a refinement of the Bloch-Wigner complex of a field F. This refinement is complex of modules over the multiplicative group of the field. Instead of computing K2(F) and Kind3(F) - as the classical Bloch-Wigner complex does - it calculates the second and third integral homology of SL2(F). On passing to F× -coinvariants we recover the classical Bloch-Wigner complex. We include the case of finite fields throughout the article.

Copyright
References
Hide All
1.Bak, A. & Tang, G., Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion abelian groups, Adv. Math. 189(1) (2004) 137.
2.Bak, A. & Vavilov, N., Presenting powers of augmentation ideals and Pfister forms, K-Theory 20(4) (2000) 299309, special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part IV.
3.Bloch, S.J., Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series 11, American Mathematical Society, Providence, RI, 2000.
4.Brown, K.S., Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York, 1982.
5.Cartan, H. & Eilenberg, S., Homological algebra, Princeton University Press, Princeton, N. J., 1956.
6.Dupont, J.L. & Sah, C.H., Scissors congruences. II, J. Pure Appl. Algebra 25(2) (1982) 159195.
7.Goette, S. & Zickert, C.K., The extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 11 (2007) 16231635.
8.Hutchinson, K., A refined Bloch group and the third homology of SL2 of a field, Journal of Pure and Applied Algebra (2013), doi: 10.1016/j.jpaaa.2013.01.001.
9.Hutchinson, K., A new approach to Matsumoto's theorem, K-Theory 4(2) (1990) 181200.
10.Hutchinson, K. & Tao, L., The third homology of the special linear group of a field, J. Pure Appl. Algebra 213 (2009) 16651680.
11.Hutchinson, K. & Tao, L., Homology stability for the special linear group of a field and Milnor-Witt K-theory, Doc. Math. (Extra Vol.) (2010) 267315.
12.Levine, M., The indecomposable K3 of fields, Ann. Sci. École Norm. Sup. (4) 22(2) (1989) 255344.
13.Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969) 162.
14.Mazzoleni, A., A new proof of a theorem of Suslin, K-Theory 35(3-4) (2005) 199–211 (2006).
15.Merkur'ev, A.S. & Suslin, A.A., The group K3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54(3) (1990) 522545.
16.Milnor, J. & Husemoller, D., Symmetric bilinear forms, Springer-Verlag, New York, 1973, ergebnisse der Mathematik und ihrer Grenzgebiete 73.
17.Mirzaii, B., Third homology of general linear groups, J. Algebra 320(5) (2008) 18511877.
18.Morel, F., An introduction to -homotopy theory, ICTP Lecture Notes 15.
19.Morel, F., Sur les puissances de l’idéal fondamental de l’anneau de Witt, Comment. Math. Helv. 79(4) (2004) 689703.
20.Neumann, W.D., Extended Bloch group and the Cheeger-Chern-Simons class, Geom. Topol. 8 (2004) 413474 (electronic).
21.Quillen, D., On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972) 552586.
22.Sah, C.H., Homology of classical Lie groups made discrete. III, J. Pure Appl. Algebra 56(3) (1989) 269312.
23.Suslin, A.A., Homology of GLn, characteristic classes and Milnor K-theory, In: Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math. 1046, pages 357375, Springer, Berlin, 1984.
24.Suslin, A.A., Torsion in K 2 of fields, K-Theory 1(1) (1987) 529.
25.Suslin, A.A., K 3 of a field, and the Bloch group, Trudy Mat. Inst. Steklov. 183 (1990) 180199, 229, translated in Proc. Steklov Inst. Math. 1991, no. 4, 217–239, Galois theory, rings, algebraic groups and their applications (Russian).
26.Swan, R.G., The p-period of a finite group, Illinois J. Math. 4 (1960) 341346.
27.Zagier, D., The dilogarithm function, In: Frontiers in number theory, physics, and geometry. II, pages 365, Springer, Berlin, 2007.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 119 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th September 2018. This data will be updated every 24 hours.