Skip to main content
×
Home
    • Aa
    • Aa

Cohomological obstruction theory for Brauer classes and the period-index problem

  • Benjamin Antieau (a1)
Abstract
Abstract

Let U be a connected noetherian scheme of finite étale cohomological dimension in which every finite set of points is contained in an affine open subscheme. Suppose that α is a class in H2(Uét,ℂm)tors. For each positive integer m, the K-theory of α-twisted sheaves is used to identify obstructions to α being representable by an Azumaya algebra of rank m2. The étale index of α, denoted eti(α), is the least positive integer such that all the obstructions vanish. Let per(α) be the order of α in H2(Uét,ℂm)tors. Methods from stable homotopy theory give an upper bound on the étale index that depends on the period of α and the étale cohomological dimension of U; this bound is expressed in terms of the exponents of the stable homotopy groups of spheres and the exponents of the stable homotopy groups of B(ℤ/(per(α))). As a corollary, if U is the spectrum of a field of finite cohomological dimension d, then , where [] is the integer part of , whenever per(α) is divided neither by the characteristic of k nor by any primes that are small relative to d.

Copyright
References
Hide All
1.Antieau Benjamin, Čech approximation to the Brown-Gersten spectral sequence, submitted, http://arxiv.org/abs/0909.3786, 2010.
2.Artin M., On the joins of Hensel rings, Advances in Math. 7, (1971), 282296 (1971). MR0289501
3.Artin M., Brauer-Severi varieties, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math. 917, Springer, Berlin, 1982, 194210. MR657430
4.Artin M., Grothendieck A., and Verdier J. L. (eds.), Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics 270, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR0354653
5.Becher Karim Johannes and Hoffmann Detlev W., Symbol lengths in Milnor K-theory, Homology Homotopy Appl. 6, (2004) (1), 1731 (electronic). MR2061565
6.Bousfield A. K. and Friedlander E. M., Homotopy theory of Γ-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math. 658, Springer, Berlin, 1978, 80130. MR513569
7.Colliot-Thélène J.-L., Gille P., and Parimala R., Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004) (2), 285341. MR2034644
8.Colliot-Thélène J.-L., Ojanguren M., and Parimala R., Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16, Tata Inst. Fund. Res., Bombay, 2002, 185217. MR1940669
9.Căldăraru Andrei, Derived categories of twisted sheaves on Calabi-Yau manifolds, Ph.D. thesis, Cornell University, May 2000, http://www.math.wisc.edu/~andreic/.
10.de Jong A.J., The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004) (1), 7194. MR2060023
11.Edidin Dan, Hassett Brendan, Kresch Andrew, and Vistoli Angelo, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001) (4), 761777. MR1844577
12.Fantechi Barbara, Göttsche Lothar, Illusie Luc, Kleiman Steven L., Nitsure Nitin, and Vistoli Angelo, Fundamental algebraic geometry, Mathematical Surveys and Monographs 123, American Mathematical Society, Providence, RI, 2005, Grothendieck's FGA explained. MR2222646
13.Grayson Daniel, Higher algebraic K-theory. II (after Daniel Quillen), Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer, Berlin, 1976, 217240. Lecture Notes in Math. 551. MR0574096
14.Grothendieck A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966) (28), 255. MR0217086
15.Holzsager Richard, Stable splitting of K(G,1), Proc. Amer. Math. Soc. 31 (1972), 305306. MR0287540
16.Lieblich Max, Period and index in the brauer group of an arithmetic surface (with an appendix by Daniel Krashen), 2007, http://arxiv.org/abs/math/0702240.
17.Lieblich Max, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008) (1), 131. MR2388554
18.Lieblich Max, The period-index problem for fields of transcendence degree 2, 2009, http://arxiv.org/abs/0909.4345.
19.Merkurjev A. S., Kaplansky's conjecture in the theory of quadratic forms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Koltsa i Moduli. 3, 7589, 163-164. MR1047239
20.Ravenel Douglas C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press Inc., Orlando, FL, 1986. MR860042
21.Saltman David J., Division algebras over p-adic curves, J. Ramanujan Math. Soc. (1997) (1), 2547. MR1462850
22.Suslin Andrei A., On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984) (2-3), 301318. MR772065
23.Thomason R.W., Symmetric monoidal categories model all connective spectra, Theory Appl. Categ. 1 (1995) (5), 78118 (electronic). MR1337494
24.Thomason R. W. and Trobaugh Thomas, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, 247435. MR1106918
25.Thomason Robert W., First quadrant spectral sequences in algebraic K-theory via homotopy colimits, Comm. Algebra 10 (1982) (15), 15891668. MR668580
26.Thomason Robert W., Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985) (3), 437552. MR826102
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 40 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.