Skip to main content Accessibility help

Homology of some Artin and twisted Artin Groups

  • Maura Clancy (a1) and Graham Ellis (a2)


We begin the paper with a simple formula for the second integral homology of a range of Artin groups. The formula is derived from a polytopal classifying space. We then introduce the notion of a twisted Artin group and obtain polytopal classifying spaces for a range of such groups. We demonstrate that these explicitly constructed spaces can be implemented on a computer and used in homological calculations.



Hide All
1.Adem, A., Ge, J., Pan, J. and Petrosian, N., “Compatible actions and cohomology of crystallographic groups”, arXiv 0704.1823v1, (2007).
2.Appel, K.J. and Schupp, P.E., “Artin groups and infinite Coxeter groups”, Invent. Math., 72 (1983), 201220.
3.Blind, R. and Mani-Levitska, P., “Puzzles and polytope isomorphisms”, Aequationes Math., 34 (1987), 287297.
4.Brady, T., “Free resolutions for semi-direct products”, Tôhoku Math. J. 45 (1993), 535537.
5.Brady, T. and McCammond, J., “Three-generator Artin groups of large type are biautomatic”, J. Pure Applied Algebra, 151 no. 1 (2000), 19.
6.Bridson, M. and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der math. Wissensch., vol. 319 (Springer 1999).
7.Callegari, F., Moroni, D. and Salvetti, M., “The K(π,1) problem for the affine Artin group of type and its cohomology”, arXiv:0705.2830.
8.Charney, R. and Davis, M.W., “The K(π,1) problem for hyperplane complements associated to infinite reflection groups”, Journal Amer. Math. Soc., vol. 8, issue 3 (1995), 597627.
9.Charney, R. and Davis, M.W., “Finite K(π,1)s for Artin groups”, Prospects in topology (Princeton, NJ, 1994), 110124, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ, 1995.
10.Charney, R. and Peifer, D., “The K(π,1)-conjecture for the affine braid groups”, Comment. Math. Helv., 78 no. 3 (2003), 584600.
11.Chiswell, I.M., “The cohomological dimension of 1-relator groups”, J. London Math. Soc. (2) 11 (1975) 381382.
12.Coxeter, H.S.M., “Discrete groups generated by reflections”, Annals of Math. (2) 35 (1934), no. 3, 588621.
13.Clancy, M., “Explicit small classifying spaces for a range of finitely presented infinite groups”, PhD thesis, NUI Galway 2009.
14.Dehornoy, P. and Lafont, Y., “Homology of Gaussian groups”, Annales Inst. Fourier (Grenoble), 53 no. 2 (2003), 489540.
15.Eick, B., Gähler, F. and Nickel, W., “Cryst”, a package for the GAP computer algebra system, available from
16.Ellis, G., “HAP - Homological Algebra Programming”, a package for the GAP computer algebra system, available from
17.Ellis, G. and Sköldberg, E., “The K(π,1)-conjecture for a class of Artin groups”, Comment. Math. Helv., to appear.
18.Howlett, R.B., “On the Schur multipliers of Coxeter groups”, J. London Math. Soc (2), 28 no. 2 (1988), 263276.
19.Humphreys, J.E., Reflection groups and Coxeter groups, Cambridge studies in advanced mathematics 29 (CUP, 1990).
20.Kapranov, M. and Saito, S., “Hidden Stasheff polytpoes in algebraic K–theory and the space of Morse functions”, Contemp. Math. 227 (1999), 191225.
21.Salvetti, M., “The homotopy type of Artin groups, Math. Res. Lett., 1 no. 5 (1994), 565577.
22.Squier, C.C., “The homological algebra of Artin groups”, Math. Scand., 75 no. 1 (1994), 543.
23.Wall, C.T.C.Resolutions for extensions of groups”, Proc. Cambridge Philos. Soc. 57 (1961), 251255.


Homology of some Artin and twisted Artin Groups

  • Maura Clancy (a1) and Graham Ellis (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed