Skip to main content Accessibility help
×
×
Home

Motivic zeta functions in additive monoidal categories

  • Kenichiro Kimura (a1), Shun-ichi Kimura (a2) and Nobuyoshi Takahashi (a3)

Abstract

Let C be a pseudo-abelian symmetric monoidal category, and X a Schur-finite object of C. We study the problem of rationality of the motivic zeta function ζx(t) of X. Since the coefficient ring is not a field, there are several variants of rationality — uniform, global, determinantal and pointwise rationality. We show that ζx(t) is determinantally rational, and we give an example of C and X for which the motivic zeta function is not uniformly rational.

Copyright

References

Hide All
1.Atiyah, M.: Power Operations in K-theory, Quart. J. ath. Oxford. Ser. 17 (1966) 165193
2.Bourbaki, N.: Éléments de mathématique. Part I. Les structures fondamentales de l'analyse. Livre III. Topologie générale. Chapitres I et II. Actual. Sci. Ind. 858. Hermann & Cie., Paris, 1940. viii+132+II pp.
3.Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris 1970 xiii+635 pp.
4.Deligne, P.: Catégories tensorielles, Mosc. Math. J. 2(2002), no. 2, 227248.
5.Del Padrone, A., Mazza, C.: Schur-finite motives and trace identities, Boll. Unione Mat. Ital. 2(2009), 3744.
6.Fulton, W., Harris, J.: Representation Theory. Springer GTM 129.
7.Kapranov, M.: The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint(arXiv: math.AG/0001005).
8.Kimura, S.: Chow groups are finite dimensional, in some sense, Math. Ann. 331(2005), no. 1, 173201.
9.Kimura, S.: On the characterization of Alexander schemes, Compos. Math. 92(1994), no. 3, 273284.
10.Larsen, M., Lunts, V. A.: Motivic measures and stable birational geometry, Mosc. Math. J. 3(2003), no. 1, 8595.
11.Larsen, M., Lunts, V. A.: Rationality criteria for motivic zeta functions, Compos. Math. 140(2004), no. 6, 15371560.
12.Macdonald, I.G.: The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58(1962), 563568.
13.Mazza, C.: Schur functors and motives, K-Theory 33(2004), no. 2, 89106.
14.Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97(1989), no. 3, 613670.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed