Skip to main content Accessibility help
×
×
Home

Towards a K-theoretic characterization of graded isomorphisms between Leavitt path algebras

  • P. Ara (a1) and E. Pardo (a2)

Abstract

In Hazrat gave a K-theoretic invariant for Leavitt path algebras as graded algebras. Hazrat conjectured that this invariant classifies Leavitt path algebras up to graded isomorphism, and proved the conjecture in some cases. In this paper, we prove that a weak version of the conjecture holds for all finite essential graphs.

Copyright

Corresponding author

References

Hide All
1.Abrams, G., Pino, G. Aranda, The Leavitt path algebra of a graph, J. Algebra 293 (2005), 319334.
2.Abrams, G., Pino, G. Aranda, Purely infinite simple Leavitt path algebras, J. Pure Appl. Algebra, 207 (2006), 553563.
3.Abrams, G., Ánh, P.N., Louly, A., Pardo, E., Flow invariants in the classification of Leavitt algebras, J. Algebra 333 (2011), 202231.
4.Ara, P., Brustenga, M., Cortiñas, G., K-theory of Leavitt path algebras, Münster J. Math. 2 (2009), 533.
5.Ara, P., Cortiñas, G., Tensor products of Leavitt path algebras, Proc. Amer. Math. Soc. 141 (2013), 26292639.
6.Ara, P., González-Barroso, M.A., Goodearl, K.R., Pardo, E., Fractional skew monoid rings. J. Algebra 278(1) (2004), 104126.
7.Ara, P., Moreno, M. A., Pardo, E., Nonstable K-Theory for graph algebras, Algebra Rep. Th. 10 (2007), 157178.
8.Ara, P., Pardo, E., Stable rank of Leavitt path algebras, Proc. Amer. Math. Soc. 136 (2008), 23752386.
9.Pino, G. Aranda, Pardo, E., Molina, M. Siles, Exchange Leavitt path algebras and stable rank, J. Algebra 305 (2006), 912936.
10.Pino, G. Aranda, Perera, F., Molina, M. Siles, Eds., Graph algebras: bridging the gap between analysis and algebra, ISBN: 978-84-9747-177-0, University of Málaga Press, Málaga, Spain (2007).
11.Bates, T., Applications of the gauge-invariant uniqueness theorem for the Cuntz-Krieger algebras of directed graphs, Bull. Austral. Math. Soc. 65 (2002), 5767.
12.Bavula, V. V., The group of automorphisms of the algebra of polynomial integro-differential operators, J. Algebra 348 (2011), 233263.
13.Franks, J., Flow equivalence of subshifts of finite type, Ergod. Th. & Dynam. Sys. 4 (1984), 5366.
14.Goodearl, K. R.Von Neumann Regular Rings”, Second Edition, Krieger, Malabar 1991.
15.Gordon, R., Green, E.L., Graded Artin algebras. J. Algebra 76 (1982), 111137.
16.Hazrat, R., The graded Grothendieck group and the classification of Leavitt path algebras, Math. Annalen 355 (2013), 273325.
17.Hazrat, R., The dynamics of Leavitt path algebras, J. Algebra 384 (2013), 242266.
18.Hazrat, R., Graded Rings and graded Grothendieck groups. Monograph, http:rhazrat.wordpress.com/preprint.
19.Kirchberg, E., The classification of purely infinite C*-algebras using Kasparov theory, preprint.
20.Leavitt, W.G., The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113130.
21.Lind, D., Marcus, B., “An Introduction to Symbolic Dynamics and Coding”, Cambridge Univ. Press, Cambridge, 1995, Reprinted 1999 (with corrections). ISBN 0-521-55900-6.
22.Matsumoto, K., Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts, Proc. Amer. Math. Soc. 141 (2013), 23292342.
23.Matsumoto, K., K-groups of the full group actions on one-sided topological Markov shifts, Discrete Contin. Dyn. Syst. 33 (2013), 37533765.
24.Nǎstǎsescu, C., Oystaeyen, F. van, “Methods of graded rings”, Lecture Notes in Mathematics 1836, Springer Verlag, Berlin, 2004.
25.Paschke, W.L., The crossed product of a C*-algebra by an endomorphism, Proc. Amer. Math. Soc. 80 (1980), 113118.
26.Phillips, N.C., A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49114.
27.Raeburn, I., “Graph Algebras”, CBMS Reg. Conf. Ser. Math. 103, Amer. Math. Soc., Providence, RI, 2005.
28.Rørdam, M., Classification of Cuntz-Krieger algebras, K-Theory 9 (1995), 3158.
29.Smith, S. Paul, Category equivalences involving graded modules over path algebras of quivers, Adv. Math. 230 (2012), 17801810.
30.Tomforde, M., Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra 318(1) (2007), 270299.
31.Williams, R.F., Classification of subshifts of finite type, Ann. Math. 98(2) (1973), 120153.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed