1.Ausoni, C., ‘On the algebraic *K*-theory of the complex *K*-theory spectrum’, Invent. Math. 180 (2010), no.3, 611–668.

2.Baas, N. A., Dundas, B. I., Richter, B.Rognes, J., ‘Stable bundles over rig categories’, J. Topology 4 (2011) 623–640.

3.Baas, N. A., Dundas, B. I., Richter, B.Rognes, J., ‘Ring completion of rig categories’, preprint, 2010; arXiv:math/0706.0531v4.

4.Baas, N. A., Dundas, B. I.Rognes, J., ‘Two-vector bundles and forms of elliptic cohomology’, Topology, geometry and quantum field theory (ed Tillmann, U.), London Math. Soc. Lecture Note Ser. 308 (Cambridge Univ. Press, Cambridge, 2004), pp. 18–45.

5.Baez, J. C.Crans, A. S., ‘Higher-dimensional algebra. VI. Lie 2-algebras’, Theory Appl. Categ. 12 (2004) 492–538 (electronic).

6.Beke, T., ‘Higher Čech theory’, K-Theory 32 (2004) 293–322.

7.Bénabou, J., ‘Introduction to bicategories’, Reports of the Midwest Category Seminar, Lecture Notes in Mathematics 47, (Springer, Berlin, 1967), pp. 1–77.

8.Brown, E. H. Jr., Szczarba, R. H., ‘Real and rational homotopy theory’, Handbook of algebraic topology (ed James, I. M.), (North-Holland, Amsterdam, 1995), pp. 867–915.

9.Bullejos, M.Cegarra, A. M., ‘On the geometry of 2-categories and their classifying spaces’, K-Theory 29 (2003) 211–229.

10.Dugger, D.Isaksen, D. C., ‘Topological hypercovers and -realizations’, Math. Z. 246 (2004) 667–689. 11.Duskin, J. W., ‘Simplicial matrices and the nerves of weak *n*-categories. I. Nerves of bicategories’, Theory Appl. Categ. 9 (2001/02), 198–308 (electronic), CT2000 Conference (Como).

12.Dwyer, W. G.Spaliński, J., ‘Homotopy theories and model categories’, Handbook of algebraic topology (ed James, I. M.), (North-Holland, Amsterdam, 1995), pp. 73–126.

13.Dyer, E.Eilenberg, S., ‘An adjunction theorem for locally equiconnected spaces’, Pacific J. Math. 41 (1972) 669–685.

14.Galatius, S., ‘Stable homology of automorphism groups of free groups’, Ann. of Math (2) 173 (2011) 705–768.

15.Galatius, S., Madsen, I., Tillmann, U.Weiss, M., ‘The homotopy type of the cobordism category’, Acta Math. 202 (2009), no.2, 195–239.

16.Heath, P. R., ‘A pullback theorem for locally-equiconnected spaces’, Manuscripta Math. 55 (1986) 233–237.

17.Hirschhorn, P. S., *Model categories and their localizations*, Mathematical Surveys and Monographs 99, (American Mathematical Society, Providence, RI, 2003).

18.Jardine, J. F., ‘Simplicial approximation’, Theory Appl. Categ. 12 (2004) 34–72 (electronic).

19.Kapranov, M. M.Voevodsky, V. A., ‘2-categories and Zamolodchikov tetrahedra equations’, Algebraic groups and their generalizations: quantum and infinite-dimensional methods, University Park, PA, 1991, (eds Haboush, W. J. and Parshall, B. J.), Proc. Sympos. Pure Math. 56, (Amer. Math. Soc., Providence, RI, 1994), pp. 177–259.

20.Lurie, J., ‘What is … an ∞-category?’, Notices Amer. Math. Soc. (8) 55 (2008) 949–950.

21.Mac Lane, S., Categories for the working mathematician, second ed., Graduate Texts in Mathematics 5, (Springer-Verlag, New York, 1998).

22.Madsen, I., ‘Algebraic *K*-theory and traces’, Current developments in mathematics, 1995, Cambridge, MA, (eds Bott, R., Hopkins, M., Jaffe, A., Singer, I., Stroock, D. and Yau, S.-T.), (Internat. Press, Cambridge, MA, 1994), pp. 191–321.

23.Madsen, I.Weiss, M., ‘The stable moduli space of Riemann surfaces: Mumford's conjecture’, Ann. of Math. (2) 165 (2007) 843–941.

24.Moerdijk, I., Classifying spaces and classifying topoi, Lecture Notes in Mathematics 1616, (Springer-Verlag, Berlin, 1995).

25.Murray, M. K.Stevenson, D., ‘Bundle gerbes: stable isomorphism and local theory’, J. London Math. Soc. (2) 62 (2000) 925–937.

26.Quillen, D., ‘Higher algebraic *K*-theory. I’, Algebraic K-theory, I: Higher K-theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, (ed Bass, H.), Lecture Notes in Math. 341, (Springer, Berlin, 1973), pp. 85–147.

27.Rezk, C., Schwede, S.Shipley, B., ‘Simplicial structures on model categories and functors’, Amer. J. Math. 123 (2001) 551–575.

28.Segal, G., ‘Classifying spaces and spectral sequences’, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105–112.

29.Segal, G., ‘Categories and cohomology theories’, Topology 13 (1974) 293–312.

30.Spanier, E. H., Algebraic topology, (Springer-Verlag, New York, 1991); Corrected reprint of the 1966 original.

31.Street, R., ‘The algebra of oriented simplexes’, J. Pure Appl. Algebra 49 (1987) 283–335.

32.Street, R., ‘Categorical structures’, Handbook of algebra 1, (North-Holland, Amsterdam, 1996), pp. 529–577.

33.Strøm, A., ‘The homotopy category is a homotopy category’, Arch. Math. (Basel) 23 (1972) 435–441.

34.Tillmann, U., ‘On the homotopy of the stable mapping class group’, Invent. Math. 130 (1997) 257–275.

35.Weiss, M., ‘What does the classifying space of a category classify ?’, Homology, Homotopy and Applications 7 (2005) 185–195; http://intlpress.com/HHA. 36.Whitney, H., ‘Analytic extensions of differentiable functions defined in closed sets’, Trans. Amer. Math. Soc. 36 (1934) 63–89.

37.Wirth, J.Stasheff, J., ‘Homotopy transition cocycles’, J. Homotopy Relat. Struct. 1 (2006), no.1, 273–283 (electronic).