Skip to main content Accessibility help
×
×
Home

Two-Categorical Bundles and their Classifying Spaces

  • Nils A. Baas (a1), Marcel Bökstedt (a2) and Tore August Kro (a3)
Abstract

For a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.

Copyright
References
Hide All
1.Ausoni, C., ‘On the algebraic K-theory of the complex K-theory spectrum’, Invent. Math. 180 (2010), no.3, 611668.
2.Baas, N. A., Dundas, B. I., Richter, B.Rognes, J., ‘Stable bundles over rig categories’, J. Topology 4 (2011) 623640.
3.Baas, N. A., Dundas, B. I., Richter, B.Rognes, J., ‘Ring completion of rig categories’, preprint, 2010; arXiv:math/0706.0531v4.
4.Baas, N. A., Dundas, B. I.Rognes, J., ‘Two-vector bundles and forms of elliptic cohomology’, Topology, geometry and quantum field theory (ed Tillmann, U.), London Math. Soc. Lecture Note Ser. 308 (Cambridge Univ. Press, Cambridge, 2004), pp. 1845.
5.Baez, J. C.Crans, A. S., ‘Higher-dimensional algebra. VI. Lie 2-algebras’, Theory Appl. Categ. 12 (2004) 492538 (electronic).
6.Beke, T., ‘Higher Čech theory’, K-Theory 32 (2004) 293322.
7.Bénabou, J., ‘Introduction to bicategories’, Reports of the Midwest Category Seminar, Lecture Notes in Mathematics 47, (Springer, Berlin, 1967), pp. 177.
8.Brown, E. H. Jr., Szczarba, R. H., ‘Real and rational homotopy theory’, Handbook of algebraic topology (ed James, I. M.), (North-Holland, Amsterdam, 1995), pp. 867915.
9.Bullejos, M.Cegarra, A. M., ‘On the geometry of 2-categories and their classifying spaces’, K-Theory 29 (2003) 211229.
10.Dugger, D.Isaksen, D. C., ‘Topological hypercovers and -realizations’, Math. Z. 246 (2004) 667689.
11.Duskin, J. W., ‘Simplicial matrices and the nerves of weak n-categories. I. Nerves of bicategories’, Theory Appl. Categ. 9 (2001/02), 198308 (electronic), CT2000 Conference (Como).
12.Dwyer, W. G.Spaliński, J., ‘Homotopy theories and model categories’, Handbook of algebraic topology (ed James, I. M.), (North-Holland, Amsterdam, 1995), pp. 73126.
13.Dyer, E.Eilenberg, S., ‘An adjunction theorem for locally equiconnected spaces’, Pacific J. Math. 41 (1972) 669685.
14.Galatius, S., ‘Stable homology of automorphism groups of free groups’, Ann. of Math (2) 173 (2011) 705768.
15.Galatius, S., Madsen, I., Tillmann, U.Weiss, M., ‘The homotopy type of the cobordism category’, Acta Math. 202 (2009), no.2, 195239.
16.Heath, P. R., ‘A pullback theorem for locally-equiconnected spaces’, Manuscripta Math. 55 (1986) 233237.
17.Hirschhorn, P. S., Model categories and their localizations, Mathematical Surveys and Monographs 99, (American Mathematical Society, Providence, RI, 2003).
18.Jardine, J. F., ‘Simplicial approximation’, Theory Appl. Categ. 12 (2004) 3472 (electronic).
19.Kapranov, M. M.Voevodsky, V. A., ‘2-categories and Zamolodchikov tetrahedra equations’, Algebraic groups and their generalizations: quantum and infinite-dimensional methods, University Park, PA, 1991, (eds Haboush, W. J. and Parshall, B. J.), Proc. Sympos. Pure Math. 56, (Amer. Math. Soc., Providence, RI, 1994), pp. 177259.
20.Lurie, J., ‘What is … an ∞-category?’, Notices Amer. Math. Soc. (8) 55 (2008) 949950.
21.Mac Lane, S., Categories for the working mathematician, second ed., Graduate Texts in Mathematics 5, (Springer-Verlag, New York, 1998).
22.Madsen, I., ‘Algebraic K-theory and traces’, Current developments in mathematics, 1995, Cambridge, MA, (eds Bott, R., Hopkins, M., Jaffe, A., Singer, I., Stroock, D. and Yau, S.-T.), (Internat. Press, Cambridge, MA, 1994), pp. 191321.
23.Madsen, I.Weiss, M., ‘The stable moduli space of Riemann surfaces: Mumford's conjecture’, Ann. of Math. (2) 165 (2007) 843941.
24.Moerdijk, I., Classifying spaces and classifying topoi, Lecture Notes in Mathematics 1616, (Springer-Verlag, Berlin, 1995).
25.Murray, M. K.Stevenson, D., ‘Bundle gerbes: stable isomorphism and local theory’, J. London Math. Soc. (2) 62 (2000) 925937.
26.Quillen, D., ‘Higher algebraic K-theory. I’, Algebraic K-theory, I: Higher K-theories, Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972, (ed Bass, H.), Lecture Notes in Math. 341, (Springer, Berlin, 1973), pp. 85147.
27.Rezk, C., Schwede, S.Shipley, B., ‘Simplicial structures on model categories and functors’, Amer. J. Math. 123 (2001) 551575.
28.Segal, G., ‘Classifying spaces and spectral sequences’, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105112.
29.Segal, G., ‘Categories and cohomology theories’, Topology 13 (1974) 293312.
30.Spanier, E. H., Algebraic topology, (Springer-Verlag, New York, 1991); Corrected reprint of the 1966 original.
31.Street, R., ‘The algebra of oriented simplexes’, J. Pure Appl. Algebra 49 (1987) 283335.
32.Street, R., ‘Categorical structures’, Handbook of algebra 1, (North-Holland, Amsterdam, 1996), pp. 529577.
33.Strøm, A., ‘The homotopy category is a homotopy category’, Arch. Math. (Basel) 23 (1972) 435441.
34.Tillmann, U., ‘On the homotopy of the stable mapping class group’, Invent. Math. 130 (1997) 257275.
35.Weiss, M., ‘What does the classifying space of a category classify ?’, Homology, Homotopy and Applications 7 (2005) 185195; http://intlpress.com/HHA.
36.Whitney, H., ‘Analytic extensions of differentiable functions defined in closed sets’, Trans. Amer. Math. Soc. 36 (1934) 6389.
37.Wirth, J.Stasheff, J., ‘Homotopy transition cocycles’, J. Homotopy Relat. Struct. 1 (2006), no.1, 273283 (electronic).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed