Skip to main content Accesibility Help
×
×
Home

Effect of bidi smoking on nasal mucociliary clearance: a comparative study

  • B Paul (a1), S S Menon (a2), R Vasthare (a1), R Balakrishnan (a2) and S Acharya (a1)...
Abstract
Objective

To compare nasal mucociliary clearance in adult non-smokers, cigarette smokers and bidi smokers using the methylene blue dye test.

Methods

The study sample consisted of 20 non-smokers, 20 cigarette smokers and 20 bidi smokers (age range, 20–40 years). A single drop of the methylene blue dye was placed at the anterior end of the inferior turbinate of the participants’ nasal cavity. The distance travelled by the methylene blue in 15 minutes inside the nasal cavity was measured. Nasal mucociliary clearance of the three groups was compared using the Kruskal Wallis test.

Results

Nasal mucociliary clearance was significantly decreased in bidi smokers as compared to cigarette smokers and non-smokers (p < 0.05). Multivariate analysis revealed a significant association between nasal mucociliary clearance and bidi smoking, number of cigarettes or bidis smoked per day, and pack-years (all p < 0.05).

Conclusion

Nasal mucociliary clearance measurement is a simple and useful index for assessing the effect of smoking on the mucociliary activity of nasal mucosa.

Copyright
Corresponding author
Author for correspondence: Dr Shashidhar Acharya, Department of Public Health Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education(Mahe), Manipal, Karnataka, India576104 E-mail: sh.acharya@manipal.edu Fax: +91 820 257 1966
Footnotes
Hide All

Dr S Acharya takes responsibility for the integrity of the content of the paper

Footnotes
References
Hide All
1World Health Organization. WHO Report on the Global Tobacco Epidemic: Warning about the Dangers of Tobacco. Geneva: World Health Organization, 2011;50–3
2World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Smoking. Geneva: World Health Organization, 2015
3Chaudhry, K, Rath, GK. Multisectoral and Intersectoral Approach to National Tobacco Control. Paper commissioned by the World Health Organization on the occasion of the WHO International Conference on Global Tobacco Control Law: ‘Towards a WHO Framework Convention on Tobacco Control’, 7-9 January 2000, New Delhi, India
4GATS-2: Global Adult Tobacco Survey. Fact sheet: India 2016-17. In: https://www.mohfw.gov.in/sites/default/files/GATS-2%20FactSheet.pdf [26 October 2018]
5Gupta, PC, Ray, CS, Narake, SS, Palipudi, KM, Sinha, DN, Asma, S et al. Profile of dual tobacco users in India: an analysis from Global Adult Tobacco Survey, 2009-10. Indian J Cancer 2012;49:393400
6Prabhakar, B, Narake, SS, Pednekar, MS. Social disparities in tobacco use in India: the roles of occupation, education and gender. Indian J Cancer 2012;49:401–9
7Bombick, DW, Bombick, BR, Ayres, PH, Putnam, K, Avalos, J, Borgerding, MF et al. Evaluation of the genotoxic and cytotoxic potential of mainstream whole smoke and smoke condensate from a cigarette containing a novel carbon filter. Fundam Appl Toxicol 1997;39:1117
8IARC. Tobacco Smoke and Involuntary Smoking, IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans, vol. 83. Lyon: International Agency for Research on Cancer, 2004
9Hecht, SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194–210
10Satir, P, Sleigh, MA. The physiology of cilia and mucociliary interactions. Annu Rev Physiol 1990;52:137–55
11Navarrette, CR, Sisson, JH, Nance, E, Gipson, DA, Hanes, J, Wyatt, TA. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation. J Aerosol Med Pulm Drug Deliv 2012;25:159–68
12Stanley, PJ, Wilson, R, Greenstone, MA, MacWilliam, L, Cole, PJ. Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 1986;41:519–23
13Baby, MK, Muthu, PK, Johnson, P, Kannan, S. Effect of cigarette smoking on nasal mucociliary clearance: a comparative analysis using saccharin test. Lung India 2014;31:3942
14Ewert, G. On the mucus flow rate in the human nose. Acta Otolaryngol Suppl 1965;200:162
15Quinlan, MF, Salman, SD, Swift, DL, Wagner, HN, Proctor, DF. Measurement of mucociliary function in man. Am Rev Respir Dis 1969;99:1323
16General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent 2014;81:1418
17Jha, P, Jacob, B, Gajalakshmi, V, Gupta, PC, Dhingra, N, Kumar, R et al. ; RGI-CGHR Investigators. A nationally representative case-control study of smoking and death in India. N Engl J Med 2008;358:1137–47
18Heatherton, TF, Kozlowski, LT, Fagerström, KO. The Fagerström test for nicotine dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 1991;86:1119–27
19Jayant, K, Pakhale, SS. Toxic constituents in bidi smoke. In: LD Sanghwi, LD, Notani P, , eds. Tobacco and Health: The Indian Scene. Bombay: Tata Memorial Centre, 1989;101–10
20Bhonsle, RD, Murti, PR, Gupta, PC. Tobacco habits in India. In: Gupta, PC, Hamner, JE, Murti, PR, eds. Control of Tobacco Related Cancers and Other Diseases. Proceedings of an International Symposium; 1990 Jan 15–19; Bombay, India. Bombay: Oxford University Press, 1992;2546
21Pakhale, SS, Dolas, SS, Maru, GB. The distribution of total particulate matter (TPM) and nicotine between mainstream and sidestream smoke in bidis and cigarettes. Anal Lett 1997;30:383–94
22Malson, JL, Sims, K, Murty, R, Pickworth, W. Comparison of the nicotine content of tobacco used in bidis and conventional cigarettes. Tob Control 2001;10:181–3
23Abel, EL. Smoking during pregnancy: a review of effects on growth and development of offspring. Hum Biol 1980;52:593625
24Dempsey, DA, Benowitz, NL. Risks and benefits of nicotine to aid smoking cessation in pregnancy. Drug Saf 2001;24:277322
25Kim, YH, Kim, YJ, Lee, SE, Kim, YH, Lim, SH, Lee, JH et al. Effect of smoking on bronchial mucus transport velocity under total intravenous anesthesia. Korean J Anesthesiol 2008;55:52–6
26Proenca, M, Xavier, RF, Ramos, D, Cavalheri, V, Pitta, F, Cipulo Ramos, EM. Immediate and short term effects of smoking on nasal mucociliary clearance in smokers [in Portuguese]. Rev Port Pneumol 2011;17:172–6
27Karnitzki, G, Mlynski, G, Mlynski, B. Nasal mucociliary transport time and ciliary beat frequency in healthy probands and patients with sinusitis [in German]. Laryngorhinootologie 1993;72:595–8
28Corbo, GM, Foresi, A, Bonfitto, P, Mugnano, A, Agabiti, A, Cole, PJ. Measurement of nasal mucociliary clearance. Arch Dis Child 1989;64:546–50
29Altuntas, EE, Kaya, A, Uysal, , Cevit, Ö, Içağasioğlu, D, Müderris, S. Anterior rhinomanometry and determination of nasal mucociliary clearance time with the saccharin test in children with Crimean-Congo hemorrhagic fever. J Craniofac Surg 2013;24:239–42
30Liote, H, Zahm, JM, Pierrot, D, Puchelle, E. Role of mucus and cilia in nasal mucociliary clearance in healthy subjects. Am Rev Respir Dis 1989;140:132–6
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Laryngology & Otology
  • ISSN: 0022-2151
  • EISSN: 1748-5460
  • URL: /core/journals/journal-of-laryngology-and-otology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed