Skip to main content

Electrode design and insertional depth-dependent intra-cochlear pressure changes: a model experiment

  • P Mittmann (a1), A Ernst (a1) and I Todt (a1)

Preservation of residual hearing is one of the major goals in modern cochlear implant surgery. Intra-cochlear fluid pressure changes influence residual hearing, and should be kept low before, during and after cochlear implant insertion.


Experiments were performed in an artificial cochlear model. A pressure sensor was inserted in the apical part. Five insertions were performed on two electrode arrays. Each insertion was divided into three parts, and statistically evaluated in terms of pressure peak frequency and pressure peak amplitude.


The peak frequency over each third part of the electrode increased in both electrode arrays. A slight increase was seen in peak amplitude in the lateral wall electrode array, but not in the midscalar electrode array. Significant differences were found in the first third of both electrode arrays.


The midscalar and lateral wall electrode arrays have different intra-cochlear fluid pressure changes associated with intra-cochlear placement, electrode characteristics and insertion.

Corresponding author
Address for correspondence: Dr Philipp Mittmann, Department of Otolaryngology, Head and Neck Surgery, Unfallkrankenhaus Berlin, Warener Str. 7, 12683 Berlin, Germany Fax: +49 30 5681 4303 E-mail:
Hide All
1 Miranda, PC, Sampaio, AL, Lopes, RA, Ramos Venosa, A, de Oliveira, CA. Hearing preservation in cochlear implant surgery. Int J Otolaryngol 2014;2014:468515
2 Adunka, O, Unkelbach, MH, Mack, M, Hambek, M, Gstoettner, W, Kiefer, J. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: a histologically controlled insertion study. Acta Otolaryngol 2004;124:807–12
3 Carlson, ML, Driscoll, CL, Gifford, RH, Service, GJ, Tombers, NM, Hughes-Borst, BJ et al. Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol 2011;32:962–8
4 Fraysse, B, Macias, AR, Sterkers, O, Burdo, S, Ramsden, R, Deguine, O et al. Residual hearing conservation and electroacoustic stimulation with the Nucleus 24 Contour Advance cochlear implant. Otol Neurotol 2006;27:624–33
5 Sun, CH, Hsu, CJ, Chen, PR, Wu, HP. Residual hearing preservation after cochlear implantation via round window or cochleostomy approach. Laryngoscope 2015;125:1715–19
6 Gantz, BJ, Dunn, C, Walker, E, Van Voorst, T, Gogel, S, Hansen, M. Outcomes of adolescents with a short electrode cochlear implant with preserved residual hearing. Otol Neurotol 2016;37:e11825
7 Gantz, BJ, Turner, CW. Combining acoustic and electrical hearing. Laryngoscope 2003;113:1726–30
8 Gstottner, W, Pok, SM, Peters, S, Kiefer, J, Adunka, O. Cochlear implantation with preservation of residual deep frequency hearing [in German]. HNO 2005;53:784–90
9 Balkany, TJ, Connell, SS, Hodges, AV, Payne, SL, Telischi, FF, Eshraghi, AA et al. Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 2006;27:1083–8
10 Aschendorff, A, Kromeier, J, Klenzner, T, Laszig, R. Quality control after insertion of the Nucleus Contour and Contour Advance electrode in adults. Ear Hear 2007;28:75S79S
11 O'Connell, BP, Hunter, JB, Gifford, RH, Rivas, A, Haynes, DS, Noble, JH et al. Electrode location and audiologic performance after cochlear implantation: a comparative study between Nucleus CI422 and CI512 electrode arrays. Otol Neurotol 2016;37:1032–5
12 Roland, JT Jr. A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. Laryngoscope 2005;115:1325–39
13 Sennaroglu, L, Atay, G, Bajin, MD. A new cochlear implant electrode with a “cork”-type stopper for inner ear malformations. Auris Nasus Larynx 2014;41:331–6
14 Todd, CA, Naghdy, F, Svehla, MJ. Force application during cochlear implant insertion: an analysis for improvement of surgeon technique. IEEE Trans Biomed Eng 2007;54:1247–55
15 Ye, Q, Tillein, J, Hartmann, R, Gstoettner, W, Kiefer, J. Application of a corticosteroid (Triamcinolon) protects inner ear function after surgical intervention. Ear Hear 2007;28:361–9
16 Burghard, A, Lenarz, T, Kral, A, Paasche, G. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation. Hear Res 2014;312:21–7
17 Rajan, GP, Kontorinis, G, Kuthubutheen, J. The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurootol 2013;18:1722
18 Todt, I, Mittmann, P, Ernst, A. Intracochlear fluid pressure changes related to the insertional speed of a CI electrode. Biomed Res Int 2014;2014:507241
19 Mittmann, P, Ernst, A, Todt, I. Intracochlear pressure changes due to round window opening: a model experiment. ScientificWorldJournal 2014;2014:341075
20 Mittmann, P, Ernst, A, Mittmann, M, Todt, I. Optimisation of the round window opening in cochlear implant surgery in wet and dry conditions: impact on intracochlear pressure changes. Eur Arch Otorhinolaryngol 2016;273:3609–13
21 Todt, I, Ernst, A, Mittmann, P. Effects of round window opening size and moisturized electrodes on the intracochlear pressure related to the insertion of a cochlear implant electrode. Audiol Neurotol Extra 2016;6:18
22 Todt, I, Karimi, D, Luger, J, Ernst, A, Mittmann, P. Postinsertional cable movements of cochlear implant electrodes and their effects on intracochlear pressure. Biomed Res Int 2016;2016:3937196
23 Todt, I, Ernst, A, Mittmann, P. Effects of different insertion techniques of a cochlear implant electrode on the intracochlear pressure. Audiol Neurootol 2016;21:30–7
24 Todt, I, Mittmann, M, Ernst, A, Mittmann, P. Comparison of the effects of four different cochlear implant electrodes on intra-cochlear pressure in a model. Acta Otolaryngol 2017;137:235–41
25 Mittmann, M, Ernst, A, Mittmann, P, Todt, I. Insertional depth-dependent intracochlear pressure changes in a model of cochlear implantation. Acta Otolaryngol 2017;137:113–18
26 Paprocki, A, Biskup, B, Kozlowska, K, Kuniszyk, A, Bien, D, Niemczyk, K. The topographical anatomy of the round window and related structures for the purpose of cochlear implant surgery. Folia Morphol (Warsz) 2004;63:309–12
27 Olson, ES. Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J Acoust Soc Am 1998;103:3445–63
28 Havenith, S, Lammers, MJ, Tange, RA, Trabalzini, F, della Volpe, A, van der Heijden, GJ et al. Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 2013;34:667–74
29 Kontorinis, G, Paasche, G, Lenarz, T, Stover, T. The effect of different lubricants on cochlear implant electrode insertion forces. Otol Neurotol 2011;32:1050–6
30 Ciuman, RR. Communication routes between intracranial spaces and inner ear: function, pathophysiologic importance and relations with inner ear diseases. Am J Otolaryngol 2009;30:193202
31 Park, JJ, Boeven, JJ, Vogel, S, Leonhardt, S, Wit, HP, Westhofen, M. Hydrostatic fluid pressure in the vestibular organ of the guinea pig. Eur Arch Otorhinolaryngol 2012;269:1755–8
32 Laurens-Thalen, EO, Wit, HP, Segenhout, JM, Albers, FW. Direct measurement flow resistance of cochlear aqueduct in guinea pigs. Acta Otolaryngol 2004;124:670–4
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Laryngology & Otology
  • ISSN: 0022-2151
  • EISSN: 1748-5460
  • URL: /core/journals/journal-of-laryngology-and-otology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 60 *
Loading metrics...

Abstract views

Total abstract views: 289 *
Loading metrics...

* Views captured on Cambridge Core between 6th November 2017 - 15th August 2018. This data will be updated every 24 hours.