Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-04T10:20:18.388Z Has data issue: false hasContentIssue false

Frontal sinus stenting in endoscopic sinus surgery: the 10-year Oxford experience

Published online by Cambridge University Press:  05 April 2023

F Bandino*
Affiliation:
ENT Department, Oxford University Hospital, Oxford, UK
A Pendolino
Affiliation:
Department of ENT, Royal National ENT and Eastman Dental Hospitals, London, UK
J Bates
Affiliation:
ENT Department, Oxford University Hospital, Oxford, UK
A Qureishi
Affiliation:
ENT Department, Oxford University Hospital, Oxford, UK
P Martinez-Devesa
Affiliation:
ENT Department, Oxford University Hospital, Oxford, UK
*
Corresponding author: Fabrizio Bandino; Email: fabrizio.ban@gmail.com

Abstract

Background

Frontal sinus stents have been introduced to reduce frontal sinus re-stenosis after surgery and to improve outcomes.

Method

This study was a retrospective analysis of 19 patients who had endoscopic sinus surgery with approach to the frontal sinus and insertion of a soft sinus stent.

Results

The frontal recess was patent in 78.9 per cent and stenosed in 21.1 per cent of patients; no completely closed recesses were observed. Mean follow up was 20.7 months, and time period of stenting was 9.8 months on average; complications were observed in 47.4 per cent of the patients, with post-operative sinonasal infection being the most common.

Conclusion

In the authors’ experience, indications for frontal sinus stenting include recalcitrant chronic rhinosinusitis after multiple functional endoscopic sinus surgeries (especially in chronic rhinosinusitis with nasal polyps), patients with history of important craniofacial surgery or trauma, and recurrent mucoceles. The stent was overall well tolerated as only minor complications were observed. Close clinical follow up is mandatory.

Type
Main Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Fabrizio Bandino takes responsibility for the integrity of the content of the paper

References

Minni, A, Dragonetti, A, Sciuto, A, Rosati, D, Cavaliere, C, Ralli, M et al. Use of balloon catheter dilation and steroid-eluting stent in light and severe rhinosinusitis of frontal sinus: a multicenter retrospective randomized study. Eur Rev Med Pharmacol Sci 2018;22:7482–91Google ScholarPubMed
Benoit, MC, Duncavage, JA. Combined external and endoscopic frontal sinusotomy with stent placement: a retrospective review. Laryngoscope 2001;111:1246–9CrossRefGoogle ScholarPubMed
Chen, PG, Wormald, PJ, Payne, SC, Gross, WE, Gross, CW. A golden experience: fifty years of experience managing the frontal sinus. Laryngoscope 2016;126:802–7CrossRefGoogle ScholarPubMed
Banhiran, W, Sargi, Z, Collins, W, Kaza, S, Casiano, R. Long-term effect of stenting after an endoscopic modified Lothrop procedure. Am J Rhinol 2006;20:595–9CrossRefGoogle ScholarPubMed
Mansour, H. Double J stent of frontal sinus outflow tract in revision frontal sinus surgery. J Laryngol Otol 2013;127:43–7CrossRefGoogle Scholar
Shahidi, S, Jama, GM, Ahmed, SK. The use of modified Silastic nasal splints as frontal sinus stents: a technical note. J Laryngol Otol 2020;134:270–1CrossRefGoogle ScholarPubMed
Khan, MA, Alshareef, WA, Marglani, OA, Herzallah, IR. Outcome and complications of frontal sinus stenting: a case presentation and literature review. Case Rep Otolaryngol 2020;2020:8885870Google ScholarPubMed
Hunter, B, Silva, S, Youngs, R, Saeed, A, Varadarajan, V. Long-term stenting for chronic frontal sinus disease: case series and literature review. J Laryngol Otol. 2010;124:1216–22CrossRefGoogle ScholarPubMed
Reeve, NH, Ching, HH, Kim, Y, Schroeder, WW. Possible skull base erosion after prolonged frontal sinus stenting. Ear Nose Throat J 2021;100:218–21CrossRefGoogle ScholarPubMed
Durisin, M, Reifenrath, J, Weber, CM, Eifler, R, Maier, HJ, Lenarz, T et al. Biodegradable nasal stents (MgF2-coated Mg-2 wt per centNd alloy) - a long-term in vivo study. J Biomed Mater Res B Appl Biomater 2017;105:350–65CrossRefGoogle Scholar
Huang, Z, Huang, O, Zhou, B, Ma, J, Wang, M, Dong, Y. Bioabsorbable steroid-eluting sinus stents for patients with refractory frontal diseases undergoing a revision Draf 3 procedure: a case series. Acta Otolaryngol 2019;139:636–42CrossRefGoogle ScholarPubMed
Kounis, NG, Soufras, GD, Hahalis, G. Stent hypersensitivity and infection in sinus cavities. Allergy Rhinol (Providence) 2013;4:e162–5CrossRefGoogle ScholarPubMed
Goshtasbi, K, Abouzari, M, Abiri, A, Yasaka, T, Sahyouni, R, Bitner, B et al. Efficacy of steroid eluting stents in management of chronic rhinosinusitis following endoscopic sinus surgery: updated meta-analysis. Int Forum Allergy Rhinol 2019;9:1443–50CrossRefGoogle Scholar
Bury, S, Singh, A. Evaluation of a steroid releasing sinus implant for the treatment of patients undergoing frontal sinus surgery for chronic rhinosinusitis. Expert Rev Med Devices 2017;14:93101CrossRefGoogle ScholarPubMed
Hosemann, W, Schindler, E, Wiegrebe, E, Göpferich, A. Innovative frontal sinus stent acting as a local drug-releasing system. Eur Arch Otorhinolaryngol 2003;260: 131–4CrossRefGoogle ScholarPubMed
Huvenne, W, Zhang, N, Tijsma, E, Hissong, B, Huurdeman, J, Holtappels, G et al. Pilot study using doxycycline-releasing stents to ameliorate postoperative healing quality after sinus surgery. Wound Repair Regen 2008;16:757–67CrossRefGoogle ScholarPubMed
Hughes, JP, Rowe-Jones, J. Use of a ureteric pigtail stent as a self-retaining frontal sinus stent. J Laryngol Otol 2004;118:299301CrossRefGoogle ScholarPubMed
Mirza, S, Johnson, AP. A simple and effective frontal sinus stent. J Laryngol Otol 2000;114:955–6CrossRefGoogle ScholarPubMed
Rotenberg, BW, Ioanidis, KE, Sowerby, LJ. Development of a novel T-tube frontal sinus irrigation catheter. Am J Rhinol Allergy 2016;30:356–9CrossRefGoogle ScholarPubMed
Hoyt, WH 3rd. Endoscopic stenting of nasofrontal communication in frontal sinus disease. Ear Nose Throat J 1993;72:596–7CrossRefGoogle ScholarPubMed
Weber, CM, Eifler, R, Seitz, JM, Maier, HJ, Reifenrath, J, Lenarz, T et al. Biocompatibility of MgF2-coated MgNd2 specimens in contact with mucosa of the nasal sinus - a long term study. Acta Biomater 2015;18:249–61CrossRefGoogle ScholarPubMed
Weber, RK. Nasal packing and stenting. Laryngorhinootologie 2009;88(suppl 1):S139–55CrossRefGoogle ScholarPubMed
Lee, SE, Cutshaw, D, Kimple, AJ, Gelpi, MW, Brown, WC, Thorp, BD et al. Prolonged implantation of sinus devices and implications for chronic rhinosinusitis: a case report and review of the literature. Surg Case Rep (Tallinn) 2020;3:10Google ScholarPubMed
Chadwell, JS, Gustafson, M, Tami, TA. Toxic shock syndrome associated with frontal sinus stents. Otolaryngol Head Neck Surg 2001;124:573–410.1067/mhn.2001.115500CrossRefGoogle ScholarPubMed
Bandino, F, Bates, J, Qureishi, A, Martinez-Devesa, P. The use of modified Montgomery T-tubes as frontal sinus stents: how I do it. J Laryngol Otol 2022;31:16Google Scholar
Orlandi, RR, Knight, J. Prolonged stenting of the frontal sinus. Laryngoscope 2009;119:190–2CrossRefGoogle ScholarPubMed
Durisin, M, Seitz, JM, Reifenrath, J, Weber, CM, Eifler, R, Maier, HJ et al. A novel biodegradable frontal sinus stent (MgNd2): a long-term animal study. Eur Arch Otorhinolaryngol 2016;273:1455–67CrossRefGoogle ScholarPubMed