Skip to main content Accessibility help

Variability of vestibular aqueduct measurements among axial, single-oblique and double-oblique computed tomography images

  • Y Quan (a1), X J Gao (a2), J Liu (a3), R Z Gong (a4), Q Wang (a1), H Liang (a1), J L Fu (a1) and Q Cheng (a1)...



To investigate the morphology and dimensions of the vestibular aqueduct on axial, single-oblique and double-oblique computed tomography images.


The computed tomography temporal bone scans of 112 patients were retrospectively evaluated. Midpoint and opercular measurements were performed using axial, single-oblique and double-oblique images. Morphometric analyses were also conducted. The vestibular aqueduct sizes on axial, single-oblique and double-oblique images were compared.


At the midpoint, the mean (± standard deviation) vestibular aqueduct measured 0.61 ± 0.23 mm, 0.74 ± 0.27 mm and 0.82 ± 0.38 mm on axial, single-oblique and double-oblique images, respectively; at the operculum, the vestibular aqueduct measured 0.91 ± 0.30 mm, 1.11 ± 0.45 mm and 1.66 ± 1.07 mm on the respective images. The co-efficients of variation of the vestibular aqueduct measured at the midpoint were 37.4 per cent, 36.5 per cent and 47.5 per cent on axial, single-oblique and double-oblique images, respectively; at the operculum, the measurements were 33.0 per cent, 40.5 per cent and 64.5 per cent. Regarding morphology, the vestibular aqueduct was fissured (33.5 per cent), tubular (64.3 per cent) or invisible (2.2 per cent).


The morphology and dimensions of the vestibular aqueduct were highly variable among axial, single-oblique and double-oblique images.


Corresponding author

Author for correspondence: Dr Ruozhen Gong, Shandong Medical Imaging Research Institute, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, PR China E-mail: Fax: +86 530 469 1777


Hide All

Dr R Gong takes responsibility for the integrity of the content of the paper



Hide All
1Mafong, DD, Shin, EJ, Lalwani, AK. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss. Laryngoscope 2002;112:17
2Boston, M, Halsted, M, Meinzen-Derr, J, Bean, J, Vijayasekaran, S, Arjmand, E et al. The large vestibular aqueduct: a new definition based on audiologic and computed tomography correlation. Otolaryngol Head Neck Surg 2007;136:972–7
3Madden, C, Halsted, M, Benton, C, Greinwald, J, Choo, D. Enlarged vestibular aqueduct syndrome in the pediatric population. Otol Neurotol 2003;24:625–32
4Zalzal, GH, Tomaski, SM, Vezina, LG, Bjornsti, P, Grundfast, KM. Enlarged vestibular aqueduct and sensorineural hearing loss in childhood. Arch Otolaryngol Head Neck Surg 1995;121:23–8
5Valvassori, GE, Clemis, JD. The large vestibular aqueduct syndrome. Laryngoscope 1978;88:723–8
6Swartz, JD. An overview of congenital developmental sensorineural hearing loss with emphasis on the vestibular aqueduct syndrome. Semin Ultrasound CT MR 2004;25:353–68
7Dahlen, RT, Harnsberger, HR, Gray, SD, Shelton, C, Allen, R, Parkin, JL et al. Overlapping thin-section fast spin-echo MR of the large vestibular aqueduct syndrome. AJNR Am J Neuroradiol 1997;18:6775
8Berrettini, S, Forli, F, Bogazzi, F, Neri, E, Salvatori, L, Casani, AP et al. Large vestibular aqueduct syndrome: audiological, radiological, clinical, and genetic features. Am J Otolaryngol 2005;26:363–71
9Koesling, S, Rasinski, C, Amaya, B. Imaging and clinical findings in large endolymphatic duct and sac syndrome. Eur J Radiol 2006;57:5462
10Arcand, P, Desrosiers, M, Dubé, J, Abela, A. The large vestibular aqueduct syndrome and sensorineural hearing loss in the pediatric population. J Otolaryngol 1991;20:247–50
11McClay, JE, Tandy, R, Grundfast, K, Choi, S, Vezina, G, Zalzal, G et al. Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 2002;128:664–71
12Okumura, T, Takahashi, H, Honjo, I, Takagi, A, Mitamura, K. Sensorineural hearing loss in patients with large vestibular aqueduct. Laryngoscope 1995;105:289–93
13Weissman, JL. Hearing loss. Radiology 1996;199:593611
14Minerva, B. Oral cavity and oropharynx. In: Mafee, MF, Valvassori, GE, Becker, M, eds. Imaging of the Head and Neck, 2nd edn. Stuttgart: Thieme, 2005;686
15Ozgen, B, Cunnane, ME, Caruso, PA, Curtin, HD. Comparison of 45 degrees oblique reformats with axial reformats in CT evaluation of the vestibular aqueduct. AJNR Am J Neuroradiol 2008;29:30–4
16Murray, LN, Tanaka, GJ, Cameron, DS, Gianoli, GJ. Coronal computed tomography of the normal vestibular aqueduct in children and young adults. Arch Otolaryngol Head Neck Surg 2000;126:1351–7
17Vijayasekaran, S, Halsted, MJ, Boston, M, Meinzen-Derr, J, Bardo, DM, Greinwald, J et al. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. AJNR Am J Neuroradiol 2007;28:1133–8
18Dewan, K, Wippold, FJ 2nd, Lieu, JE. Enlarged vestibular aqueduct in pediatric sensorineural hearing loss. Otolaryngol Head Neck Surg 2009;140:552–8
19Pyle, GM. Embryological development and large vestibular aqueduct syndrome. Laryngoscope 2000;110:1837–42
20Lo, WW, Daniels, DL, Chakeres, DW, Linthicum, FH Jr, Ulmer, JL, Mark, LP et al. The endolymphatic duct and sac. AJNR Am J Neuroradiol 1997;18:881–7
21Legeais, M, Haguenoer, K, Cottier, JP, Sirinelli, D. Can a fixed measure serve as a pertinent diagnostic criterion for large vestibular aqueduct in children? Pediatr Radiol 2006;36:1037–42
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Laryngology & Otology
  • ISSN: 0022-2151
  • EISSN: 1748-5460
  • URL: /core/journals/journal-of-laryngology-and-otology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed