Skip to main content Accesibility Help
×
×
Home

ARMA Neural Networks for Predicting DGPS Pseudorange Correction

  • Dah-Jing Jwo (a1), Tai-Shen Lee (a1) and Ying-Wei Tseng (a1)
Abstract

In this paper, the Auto-Regressive Moving-Averaging (ARMA) neural networks (NNs) will be incorporated for predicting the differential Global Positioning System (DGPS) pseudorange correction (PRC) information. The neural network is employed to realize the time-varying ARMA implementation. Online training for real-time prediction of the PRC enhances the continuity of service on the differential correction signals and therefore improves the positioning accuracy. When the PRC signal is lost, the ARMA neural network predicted PRC would temporarily provide correction data with very good accuracy. Simulation is conducted for evaluating the ARMA NN based DGPS PRC prediction accuracy. A comparative performance study based on two types of ARMA neural networks, i.e. Back-propagation Neural Network (BPNN) and General Regression Neural Network (GRNN), will be provided.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Navigation
  • ISSN: 0373-4633
  • EISSN: 1469-7785
  • URL: /core/journals/journal-of-navigation
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed