Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T23:00:01.886Z Has data issue: false hasContentIssue false

Autonomous multicopter landing on a moving vehicle based on RSSI

Published online by Cambridge University Press:  12 February 2024

Jongwoo An*
Affiliation:
Department of Electronics Engineering, Pusan National University, Kumjeong-ku, Republic of Korea
Hosun Kang
Affiliation:
Department of Electronics Engineering, Pusan National University, Kumjeong-ku, Republic of Korea
Jiwook Choi
Affiliation:
Department of Electronics Engineering, Pusan National University, Kumjeong-ku, Republic of Korea
Jangmyung Lee
Affiliation:
Department of Electronics Engineering, Pusan National University, Kumjeong-ku, Republic of Korea
*
*Corresponding author: Jongwoo An; Email: jongwoo7379@pusan.ac.kr

Abstract

Currently, most of the studies on unmanned aerial vehicle (UAV) automatic landing systems mainly depend on image information to determine the landing location. However, the system requires a camera, a gimbal system and a separate image-processing device, which increases the weight and power consumption of the UAV, resulting in a shorter flight time. In addition, a large amount of computation and slow reaction speed can cause the camera to miss a proper landing moment. To solve these problems, in this study, the moving direction and relative distance between an object and the automatic landing system were measured using a receive signal strength indicator of the radio-frequency (RF) signal. To improve the movement direction and relative distance estimation accuracy, the noise in the RF signal was minimised using a low pass filter and moving average filter. Based on the filtered RF signal, the acceleration of the multicopter to reach the object was estimated by adopting the proportional navigation algorithm. The performance of the proposed algorithm for precise landing on a moving vehicle was demonstrated through experiments.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Died 24 July 2021

References

Amanatiadis, A. (2016). A multisensor indoor localization system for biped robots operating in industrial environments. IEEE Transactions on Industrial Electronics, 63(12), 75977606.CrossRefGoogle Scholar
An, J. and Lee, J. (2018). Using IMU Sensor and EKF Algorithm in Attitude Control of A Quad-Rotor Helicopter. International Conference on Intelligent Autonomous Systems, pp. 933–942.Google Scholar
Borowczyk, A., Nguyen, D.T., Nguyen, A.P.V., Nguyen, D.Q., Saussié, D. and Le Ny, J. (2017). Autonomous landing of a quadcopter on a high-speed ground vehicle. Journal of Guidance, Control, and Dynamics, 40(9), 23782385.CrossRefGoogle Scholar
Brighton, C.H., Thomas, A.L. and Taylor, G.K. (2017). Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles. Proceedings of the National Academy of Sciences, 114(51), 1349513500.CrossRefGoogle ScholarPubMed
Cho, N. and Kim, Y. (2016). Optimality of augmented ideal proportional navigation for maneuvering target interception. IEEE Transactions on Aerospace and Electronic Systems, 52(2), 948954.CrossRefGoogle Scholar
Choi, J., Hwang, D., An, J. and Lee, J.M. (2019). Object detection using CNN for automatic landing of drones. Journal of the Institute of Electronics and Information Engineers, 56(5), 8290.CrossRefGoogle Scholar
Feng, Y., Zhang, C., Baek, S., Rawashdeh, S. and Mohammadi, A. (2018). Autonomous landing of a UAV on a moving platform using model predictive control. Drones, 2(4), 34.CrossRefGoogle Scholar
Foster, J., Li, N. and Cheung, K.F. (2014). Sea state determination from ship-based geodetic GPS. Journal of Atmospheric and Oceanic Technology, 31(11), 25562564.CrossRefGoogle Scholar
Garcia, E., Casbeer, D., Pham, K.D. and Pachter, M. (2018). Cooperative Aircraft Defense From an Attacking Missile Using Proportional Navigation. Proceeding of the 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, USAGoogle Scholar
Girard, A.R. and Kabamba, P.T. (2015). Proportional navigation: Optimal homing and optimal evasion. SIAM Review, 57(4), 611624.CrossRefGoogle Scholar
Jeon, S.Y. and Kim, M.J. (2011). RSSI Compensation Scheme Based on Successive Distance Comparison for Weighted Centroid Localization Algorithm. Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, pp. 109–110.Google Scholar
Jiang, T., Lin, D. and Song, T. (2019). Vision-based autonomous landing of a quadrotor using a gimbaled camera. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(14), 50935106.CrossRefGoogle Scholar
Jung, S., Hwang, S., Shin, H. and Shim, D.H. (2018). Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robotics and Automation Letters, 3(3), 25392544.CrossRefGoogle Scholar
Kim, S. and Kim, Y. (2011). A study on indoor location estimation using RSSI of low power tag in RFID/USN environments. Journal of Korean Information Technology, 9(10), 6774.Google Scholar
Kim, G.W., Park, J.H., Lee, S.J. and Kim, J.H. (2019). Study on Improvement of Noise Control and SOC Estimation Using Moving Average Filter and Adaptive Kalman Filter. The Korean Institute of Power Electronics Conference, pp. 198–200.Google Scholar
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. (2018). Deblurgan: Blind Motion Deblurring Using Conditional Adversarial Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Slat Lake city, USA, pp. 8183–8195.CrossRefGoogle Scholar
Lee, K.U., Yun, Y.H., Chang, W., Park, J.B. and Choi, Y.H. (2011). Modeling and Controller Design of Quadrotor UAV. Proceedings of the Korean Institute of Electrical Engineers, Pyeonchang, KOR.Google Scholar
Li, Z., Chen, Y., Lu, H., Wu, H. and Cheng, L. (2019). Uav Autonomous Landing Technology Based on Apriltags Vision Positioning Algorithm. 2019 Chinese Control Conference, pp. 8148–8153.CrossRefGoogle Scholar
Li, X., Dick, G., Ge, M., Heise, S., Wickert, J. and Bender, M. (2014). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophysical Research Letters, 41(10), 36153621.CrossRefGoogle Scholar
Li, C., Huang, H. and Liao, B. (2020). An improved fingerprint algorithm with access point selection and reference point selection strategies for indoor positioning. The Journal of Navigation, 73(6), 11821201.CrossRefGoogle Scholar
Nah, S., Hyun Kim, T. and Mu Lee, K. (2017). Deep Multi-Scale Convolutional Neural Network for Dynamic Scene Deblurring. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 3883–3891.Google Scholar
Palafox, P.R., Garzón, M., Valente, J., Roldán, J.J. and Barrientos, A. (2019). Robust visual-aided autonomous takeoff, tracking, and landing of a small UAV on a moving landing platform for life-long operation. Applied Sciences, 9(13), 2661.CrossRefGoogle Scholar
Pramod, P. (2014). GPS based advanced soldier tracking with emergency messages & communication system. International Journal of Advance Research in Computer Science and Management Studies Research Article, 2(6), 2532.Google Scholar
Shin, B., Lee, J.H., Shin, D., Yu, C., Kyung, H. and Lee, T. (2020). Performance enhancement of emergency rescue system using surface correlation technology. Journal of Positioning, Navigation, and Timing, 9(3), 183189.Google Scholar
Shiraishi, Y., Takano, H., Yamasaki, T. and Yamaguchi, I. (2019). A Study on the Improvement of Modified Proportional Navigation Guidance. AIAA Scitech 2019 Forum, p. 2346.CrossRefGoogle Scholar
Truong, N.Q., Lee, Y.W., Owais, M., Nguyen, D.T., Batchuluun, G., Pham, T.D. and Park, K.R. (2020). SlimDeblurGAN-based motion deblurring and marker detection for autonomous drone landing. Sensors, 20(14), 3918.CrossRefGoogle ScholarPubMed
Tzoumanikas, D., Li, W., Grimm, M., Zhang, K., Kovac, M. and Leutenegger, S. (2019). Fully autonomous micro air vehicle flight and landing on a moving target using visual– inertial estimation and model-predictive control. Journal of Field Robotics, 36(1), 4977.CrossRefGoogle Scholar
Wang, B., Deng, Z., Liu, C., Xia, Y. and Fu, M. (2013a). Estimation of information sharing error by dynamic deformation between inertial navigation systems. IEEE Transactions on Industrial Electronics, 61(4), 20152023.CrossRefGoogle Scholar
Wang, J. and Olson, E. (2016). AprilTag 2: Efficient and Robust Fiducial Detection. Proceeding of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, KOR, pp. 4193–4198.CrossRefGoogle Scholar
Wang, Y., Yang, X., Zhao, Y., Liu, Y. and Cuthbert, L. (2013b). Bluetooth Positioning Using RSSI and Triangulation Methods. IEEE 10th Consumer Communications and Networking Conference, pp. 837–842 .Google Scholar
Wubben, J., Fabra, F., Calafate, C.T., Krzeszowski, T., Marquez-Barja, J.M., Cano, J.C. and Manzoni, P. (2019). Accurate landing of unmanned aerial vehicles using ground pattern recognition. Electronics, 8(12), 1532.Google Scholar
Xiao, X., Dufek, J., Woodbury, T. and Murphy, R. (2017). Uav Assisted usv Visual Navigation for Marine Mass Casualty Incident Response. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6105–6110.CrossRefGoogle Scholar
Yi, D.H. and Kim, S.C. (2017). Analysis of computer simulated and field experimental results of LoRa considering path loss under LoS and NLoS environment. The Journal of Korean Institute of Communications and Information Sciences, 42(2), 444452.CrossRefGoogle Scholar
Yuan, Y., Huo, X., Ou, J., Zhang, K., Chai, Y., Wen, D. and Grenfell, R. (2008). Refining the klobuchar ionospheric coefficients based on GPS observations. IEEE Transactions on Aerospace and Electronic Systems, 44(4), 14981510.Google Scholar
Zhao, J., Gao, X., Wang, X., Li, C., Song, M. and Sun, Q. (2018). An efficient radio map updating algorithm based on K-means and Gaussian process regression. The Journal of Navigation, 71(5), 10551068.CrossRefGoogle Scholar
Zheng, D., Lin, D., Xu, X. and Tian, S. (2017). Dynamic stability of rolling missile with proportional navigation & PI autopilot considering parasitic radome loop. Aerospace Science and Technology, 67, 4148.CrossRefGoogle Scholar
Zhu, Q., Zhao, Z. and Lin, L. (2013). Real time estimation of slant path tropospheric delay at very low elevation based on singular ground-based global positioning system station. IET Radar, Sonar & Navigation, 7(7), 808814.Google Scholar