Skip to main content Accessibility help
×
Home

Kinematic Post-processing of Ship Navigation Data Using Precise Point Positioning

  • John B. DeSanto (a1), C. David Chadwell (a1) and David T. Sandwell (a1)

Abstract

Seafloor geodetic studies such as Global Positioning System (GPS)-Acoustic experiments often require the measurement platform on the sea surface to be positioned accurately to within a few centimetres. In this paper, we test the utility of Precise Point Positioning (PPP) for this application with two experiments. The first fixed platform experiment is a comparison between three independent processing software packages: Positioning and Navigation Data Analyst (PANDA), Global Navigation Satellite System-Inferred Positioning System and Orbit Analysis Simulation Software (GIPSY-OASIS), and the Canadian Spatial Reference System (CSRS)) and a more accurate solution based on conventional differential processing of a remote GPS station in the Aleutian Islands. The second moving platform experiment is a comparison among the three PPP software packages using 40 hours of ship navigation data collected during the Roger Revelle RR1605 cruise 170 nautical miles southwest of Palau in May 2016. We found the PPP solutions were repeatable to 5·49 cm in the horizontal components and 12·4 cm in the vertical component. This demonstrates not only that PPP is a useful tool for positioning marine platforms in remote locations, but also that modern ship navigation instruments such as the Kongsberg Seapath 330 + are suitable for seafloor geodetic application.

Copyright

Corresponding author

References

Hide All
Asada, A. and Yabuki, T. (2001). Centimeter-level positioning on the seafloor. Proceedings of the Japan Academy, Series B, 77, 712.
Bertiger, W., Desai, S.D., Haines, B., Harvey, N., Moore, A.W., Owen, S. and Weiss, J.P. (2010). Single receiver phase ambiguity resolution with GPS data, Journal of Geodesy, 84, 327337.
Bürgmann, R. and Chadwell, D. (2014). Seafloor geodesy. Annual Review of Earth and Planetary Sciences, 42 (1), 509534, doi:10.1146/annurev-earth-060313-054953.
Chadwell, C. D. and Bock, Y. (2001). Direct estimation of absolute precipitable water in oceanic regions by GPS tracking of a coastal buoy. Geophysical Research Letters, 28, 37013704. doi:10.1029/2001GL013280
CSRS. (2016). Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) tool. https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en
DeSanto, J.B., Sandwell, D.T. and Chadwell, C.D. (2016), Seafloor geodesy from repeated sidescan sonar surveys. Journal of Geophysical Research: Solid Earth, 121, 48004813, doi:10.1002/2016JB013025.
Foster, J., Li, N. and Cheung, K.F. (2014). Sea State Determination from Ship-Based Geodetic GPS. Journal of Atmospheric and Oceanic Technology, 31, 25562564, https://doi.org/10.1175/JTECH-D-13-00211.1
Fujita, M., Ishikawa, T., Mochizuki, M., Sato, M., Toyama, S., Katayama, M., Matsumoto, Y., Yabuki, T., Asada, A. and Colombo, O.L (2006). GPS/Acoustic seafloor geodetic observation: Method of data analysis and its application. Earth Planets Space, 58, 265275.
Fujiwara, T., Tamaki, K., Fujimoto, H., Ishii, T., Seama, N., Toh, H., Koizumi, K., Igarashi, C., Segawa, J., Kobayashi, K., Kido, M., Seno, T. and Kinoshita, H. (1995), Morphological studieas of the Ayu Trough, Philippine Sea – Caroline Plate Boundary. Geophysical Research Letters, 22, 109112. doi:10.1029/94GL02719.
Gagnon, K., Chadwell, C.D. and Norabuena, E. (2005), Measuring the onset of locking in the peru-Chile trench with GPS and acoustic measurements. Nature, 434(7030), 205208.
Geng, J., Bock, Y., Melgar, D., Crowell, B.W. and Haase, J.S. (2013). A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochemistry, Geophysics, Geosystems, 14, doi:10.1002/ggge.20144.
Hong, J.K. and Lee, S.M. (2002). Reflection Seismology in the Southern Ayu Trough, a Slow-spreading Divergent Boundary. Ocean and Polar Research, 24, 189196. doi:10.4217/OPR.2002.24.3.189.
Kealy, J., Foster, J. and Businger, S. (2012). GPS meteorology: An investigation of ocean-based precipitable water estimates. Journal of Geophysical Research: Atmospheres, 117, D17303, doi:10.1029/2011JD017422.
Rocken, C., Johnson, J., Van Hove, T. and Iwabuchi, T. (2005). Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophysical Research Letters, 32, L12813, doi:10.1029/2005GL022573.
Shi, C., Zhao, Q., Geng, J., Lou, Y., Ge, M. and Liu, J. (2008). Recent development of PANDA software in GNSS data processing. Proceedings of SPIE 7285, International Conference on Earth Observation Data Processing and Analysis (ICEODPA), 72851S (29 December 2008); doi:10.1117/12.816261; http://dx.doi.org/10.1117/12.816261
Smith, W. H. F., and Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, v. 277, 19571962.
Spiess, F.N., Chadwell, C.D., Hildebrand, J.A., Young, L.E., Purcell, J.G.H. and Dragert, H. (1998). Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies. Physics of the Earth and Planetary Interiors, 108, 101112.
Tadokoro, K., Ikuta, R., Watanabe, T., Ando, M., Okuda, T., Nagai, S., Yasuda, K. and Sakata, T. (2012). Interseismic seafloor crustal deformation immediately above the source region of anticipated megathrust earthquake along the Nankai Trough, Japan. Geophysical Research Letters, 39, L10306, doi:10.1029/2012GL051696.
Watanabe, S., Bock, Y., Chadwell, C., Fang, P. and Geng, J. (2017). Long-term stability of the kinematic Precise Point Positioning for the sea surface observation unit compared with the baseline analysis. Report of Hydrographic and Oceanographic Researches, 54, 3873.
Yasuda, K., Tadokoro, K., Taniguchi, S., Kimura, H. and Matsuhiro, K. (2017). Interplate locking condition derived from seafloor geodetic observation in the shallowest subduction segment at the Central Nankai Trough, Japan. Geophysical Research Letters, 44, 35723579, doi:10.1002/2017GL072918.
Yokota, Y., Ishikawa, T., Sato, M., Watanabe, S., Saito, H., Ujihara, N., Matsumoto, Y., Toyama, S., Fujita, M., Yabuki, T., Mochizuki, M. and Asada, A. (2015) Heterogeneous interplate coupling along the Nankai Trough, Japan, detected by GPS-acoustic seafloor geodetic observation. Progress in Earth and Planetary Science, 2, 10. https://doi.org/10.1186/s40645-015-0040-y
Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T. and Asada, A. (2016). Sea?oor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature. 534, 374377, doi:10.1038/nature17632
Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 50055017, doi:10.1029/96JB03860.

Keywords

Kinematic Post-processing of Ship Navigation Data Using Precise Point Positioning

  • John B. DeSanto (a1), C. David Chadwell (a1) and David T. Sandwell (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed