No CrossRef data available.
Published online by Cambridge University Press: 12 March 2025
This study describes an optimal method for deploying rescue ships in response to marine accidents using dynamic programming and particle swarm optimisation in an archipelago. We solved the shortest distance problem from a rescue ship to a marine accident using dynamic programming, which avoids obstacles, such as land or aquacultures. The optimal location problem is NP-hard. However, the optimal locations were found to be efficient among the various candidate combinations using particle swarm optimisation. We compared two models based on the set covering location model (SCLM) and P-median model (PMM). The PMM outperformed the SCLM approach in the test. The findings of this study may be valuable for directing judgments regarding search and rescue (SAR) vessel placements to maximise resource utilisation efficiency and service quality. Furthermore, this process can flexibly arrange multiple rescue ships.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.