Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-18T12:41:10.573Z Has data issue: false hasContentIssue false

Passenger travel mode choice between short sea shipping and road transportation: a case from Zhoushan Archipelago (China)

Published online by Cambridge University Press:  09 June 2025

Qin Lin
Affiliation:
College of International Economics & Trade, Ningbo University of Finance & Economics, Ningbo, China
Tingliu Xu
Affiliation:
Faculty of Maritime and Transportation, Ningbo University, Ningbo, China
Manel Grifoll
Affiliation:
Barcelona Innovation in Transport (BIT), Barcelona School of Nautical Studies, Universitat Politècnica de Catalunya – BarcelonaTech, Barcelona, Spain
Hongxiang Feng*
Affiliation:
Faculty of Maritime and Transportation, Ningbo University, Ningbo, China
*
Corresponding author: Hongxiang Feng; Email: fenghongxiang@nbu.edu.cn

Abstract

The optimisation of inter-island transportation systems constitutes a critical determinant of regional economic development and the efficacy of mobility infrastructure. This study presents a comparative analysis of passenger mode selection between short-sea shipping (SSS) and road transport alternatives through stated preference surveys conducted via anonymised questionnaires. Employing advanced discrete choice modelling techniques – specifically the multinomial logit (MNL), random parameter logit (RPL) and latent class (LC) frameworks – we quantitatively disentangle the complex determinants influencing modal preferences. Our systematic sensitivity analysis reveals distinct behavioural patterns: passengers opting for SSS prioritise journey convenience, whereas road transport users exhibit stronger cost sensitivity. These findings provide actionable insights for formulating evidence-based policies to enhance intermodal transportation networks in the Zhoushan Archipelago of China. Beyond its immediate geographical focus, this research contributes methodological innovations by applying finite mixture models to capture unobserved heterogeneity in maritime transport decisions. The framework demonstrates significant transferability potential for island territories globally and urban freight corridor optimisation challenges, particularly in contexts requiring trade-off analyses between maritime efficiency and terrestrial logistics constraints.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arencibia, A. I., Feo-Valero, M., García-Menéndez, L. and Román, C. (2015). Modelling Mode Choice for Freight Transport Using Advanced Choice Experiments. Transportation Research Part A: Policy Practice, 75, 252267.Google Scholar
Bagloee, S. A. and Withers, G. (2019). Side Constrained Optimisation to Capture Capacity of Choices in the Multinomial Logit Model: Case Study of Income Tax Policy in the USA Prior to the 2009 Economic Crisis. International Journal of Operational Research, 36(1), 123149.10.1504/IJOR.2019.102073CrossRefGoogle Scholar
Becker, J., Burgess, A. and Henstra, D. A. (2004). No Need for Speed in Short Sea Shipping. Maritime Economics Logistics, 6(3), 236251.10.1057/palgrave.mel.9100111CrossRefGoogle Scholar
Bendall, H. B. and Brooks, M. R. (2011). Short Sea Shipping: Lessons for or from Australia. International Journal of Shipping and Transport Logistics, 3(4), 384405.10.1504/IJSTL.2011.041134CrossRefGoogle Scholar
Börjesson, M. (2008). Joint RP–SP Data in a Mixed Logit Analysis of Trip Timing Decisions. Transportation Research Part E: Logistics Transportation Review Transportation Review, 44(6), 10251038.10.1016/j.tre.2007.11.001CrossRefGoogle Scholar
Brathwaite, T. and Walker, J. L. (2018). Asymmetric, Closed-Form, Finite-Parameter Models of Multinomial Choice. Journal of Choice Modelling, 29, 78112.10.1016/j.jocm.2018.01.002CrossRefGoogle Scholar
Brons, M., Pels, E., Nijkamp, P. and Rietveld, P. (2002). Price Elasticities of Demand for Passenger Air Travel: A Meta-Analysis. Journal of Air Transport Management, 8(3), 165175.10.1016/S0969-6997(01)00050-3CrossRefGoogle Scholar
Brooks, M. R. and Wilmsmeier, G. (2017). A Chilean Maritime Highway Is It a Possible Domestic Transport Option? Transportation Research Record, 2611(1), 3240.10.3141/2611-04CrossRefGoogle Scholar
Choocharukul, K. and Van, H. T. (2008). Psychological Effects of Travel Behavior on Preference of Residential Location Choice. Transportation Research Part A: Policy Practice, 42(1), 116124.Google Scholar
de Dios Ortúzar, J. and Willumsen, L. G. (2012). Modelling transport. IEEE intelligent transportation systems magazine, 4(1), 4041.Google Scholar
Dehghani, Y., Adury, M. K., Bradley, M. and Gihring, C. K. (2002). Washington State Ferries’ Travel Demand Model Development and Forecasting Analysis Programs: A 10-Year Perspective. Transportation Research Record, 1793(1), 106118.10.3141/1793-14CrossRefGoogle Scholar
Deng, Y. (2022). Application of Machine Learning with a Surrogate Model to Explore Seniors’ Daily Activity Patterns. Transportation Letters, 14(9), 972982.10.1080/19427867.2021.1969169CrossRefGoogle Scholar
Devarasetty, P. C., Burris, M. and Shaw, W. D. (2012). The Value of Travel Time and Reliability-Evidence from a Stated Preference Survey and Actual Usage. Transportation Research Part A: Policy Practice, 46(8), 12271240.Google Scholar
DeVellis, R. F. and Thorpe, C. T. (2021). Scale Development: Theory and Applications. Sage Publications.Google Scholar
Efthymiou, M. and Papatheodorou, A. (2015). Intermodal Passenger Transport and Destination Competitiveness in Greece. Anatolia, 26(3), 459471.10.1080/13032917.2015.1012171CrossRefGoogle Scholar
Feng, H., Grifoll, M., Zheng, P., Martin Mallofre, A., Murphy, F. and Li, S. (2021). Evolution and Container Traffic Prediction of Yangtze River Delta Multi-Port System (2001-2017) International Journal of Shipping and Transport Logistics, 13(1/2), 4469.10.1504/IJSTL.2021.112912CrossRefGoogle Scholar
García-Menéndez, L. and Feo-Valero, M. (2009). European Common Transport Policy and Short-Sea Shipping: Empirical Evidence Based on Modal Choice Models. Transport Reviews, 29(2), 239259.10.1080/01441640802357192CrossRefGoogle Scholar
García-Menéndez, L., Martínez-Zarzoso, I., De Miguel, D. P.(2004). Determinants of Mode Choice between Road and Shipping for Freight Transport: Evidence for Four Spanish Exporting Sectors. Journal of Transport Economics and Policy, 38(3), 447466.Google Scholar
Grifoll, M., Osés, F. and Castells, M. (2018). Potential Economic Benefits of Using a Weather Ship Routing System at Short Sea Shipping. Wmu Journal of Maritime Affairs, 17(2), 117.10.1007/s13437-018-0143-6CrossRefGoogle Scholar
Grisolía, J. M. and de Dios Ortúzar, J. (2010). Forecasting vs. Observed Outturn: Studying Choice in Faster Inter-Island Connections. Transportation Research Part A: Policy, 44(3), 159168.Google Scholar
Hensher, D. A., Rose, J. M. and Greene, W. H. (2008). Combining RP and SP Data: Biases in using the Nested Logit ‘Trick’–Contrasts with Flexible Mixed Logit Incorporating Panel and scale Effects. Journal of Transport Geography, 16(2), 126133.10.1016/j.jtrangeo.2007.07.001CrossRefGoogle Scholar
Hess, S. and Adler, T. (2007). Modelling Airport and Airline Choice Behaviour with the Use of Stated Preference Survey Data. Transportation Research Part E: Logistics Transportation Review, 43(3), 221233.10.1016/j.tre.2006.10.002CrossRefGoogle Scholar
Hillel, T., Bierlaire, M., Elshafie, M. Z. E. B. and Jin, Y. (2021). A Systematic Review of Machine Learning Classification Methodologies for Modelling Passenger Mode Choice. Journal of Choice Modelling, 38, 100221.10.1016/j.jocm.2020.100221CrossRefGoogle Scholar
Huang, Y., Gao, L., Ni, A. and Liu, X. (2021). Analysis of Travel Mode Choice and Trip Chain Pattern Relationships Based on Multi-Day GPS data: A Case Study in Shanghai, China. Journal of Transport Geography, 93, 103070.10.1016/j.jtrangeo.2021.103070CrossRefGoogle Scholar
Konstantinus, A., Zuidgeest, M., Hess, S. and de Jong, G. (2020). Assessing Inter-Urban Freight Mode Choice Preference for Short-Sea Shipping in the Southern African Development Community region. Journal of Transport Geography, 88, 102816.10.1016/j.jtrangeo.2020.102816CrossRefGoogle Scholar
Lazarsfeld, P. F. and Henry, N. W. (1969). Latent Structure Analysis. American Sociological Review.Google Scholar
Li, Z., Hensher, D. A. and Ho, C. (2020). An Empirical Investigation of Values of Travel Time Savings from Stated Preference Data and Revealed Preference Data. Transportation Letters, 12(3), 166171.10.1080/19427867.2018.1546806CrossRefGoogle Scholar
Lin, T. H. and Dayton, C. M. (1997). Model Selection Information Criteria for Non-Nested Latent Class Models. Journal of Educational Behavioral Statistics, 22(3), 249264.10.3102/10769986022003249CrossRefGoogle Scholar
Melis, L., Queiroz, M. and Sörensen, K. (2024). The Integrated on-Demand Bus Routing Problem: Combining on-Demand Buses with a High-Frequency Fixed Line Public Transport Network. Computers & Operations Research, 164, 106554.10.1016/j.cor.2024.106554CrossRefGoogle Scholar
Meunier, D. and Quinet, E. (2012). Applications of Transport Economics and Imperfect Competition. Research in Transportation Economics, 36(1), 1929.10.1016/j.retrec.2012.03.010CrossRefGoogle Scholar
Mitropoulos, L., Antypas, A. and Kepaptsoglou, K. (2022). Transportation Planning for Ferry Services by using a Continuous Approximation Model: The Case of the Aegean Islands, Greece. Transportation Letters, 14(5), 512523.10.1080/19427867.2021.1901010CrossRefGoogle Scholar
Moeckel, R., Fussell, R. and Donnelly, R. (2015). Mode Choice Modeling for Long-Distance Travel. Transportation Letters, 7(1), 3546.10.1179/1942787514Y.0000000031CrossRefGoogle Scholar
Molloy, J., Becker, F., Schmid, B. and Axhausen, K. W. (2021). Mixl: An Open-Source R Package for Estimating Complex Choice Models on Large Datasets. Journal of Choice Modelling, 39, 100284.10.1016/j.jocm.2021.100284CrossRefGoogle Scholar
Morales-Fusco, P. and Sauri, S. (2009). Performance Indicators for Roll-on-Roll-off Terminals A Planning Assessment Tool. Transportation Research Record, 2100(1), 3846.10.3141/2100-05CrossRefGoogle Scholar
Morfopos, N., Kopsidas, A. and Kepaptsoglou, K. (2024). How does tourism affect permanent residents’ travel preferences? The case of Rhodes, Greece. Transportation Letters, 16(7), 703714.10.1080/19427867.2023.2234709CrossRefGoogle Scholar
Murray, S. J., Walton, D. and Thomas, J. A. (2010). Attitudes towards public transport in New Zealand. Transportation, 37(6), 915929.10.1007/s11116-010-9303-zCrossRefGoogle Scholar
Nguyen, S., Pallottino, S. and Malucelli, F. (2001). A Modeling Framework for Passenger Assignment on a Transport Network with Timetables. Transportation Science, 35(3), 238249.10.1287/trsc.35.3.238.10152CrossRefGoogle Scholar
Pan, X. and Zuo, Z. (2020). Investigating Travelers’ Heterogeneous Attitudes Toward Losses: Insights from a Stated Preference Experiment. Transportation Letters, 12(8), 559569.10.1080/19427867.2019.1669000CrossRefGoogle Scholar
Raza, Z., Svanberg, M. and Wiegmans, B. (2020). Modal Shift from Road Haulage to Short Sea Shipping: A Systematic Literature Review and Research Directions. Transport Reviews, 40(3), 382406.10.1080/01441647.2020.1714789CrossRefGoogle Scholar
Reis, V., Fabian Meier, J., Pace, G. and Palacin, R. (2013). Rail and Multi-Modal Transport. Research in Transportation Economics, 41(1), 1730.10.1016/j.retrec.2012.10.005CrossRefGoogle Scholar
Rezaei, S., Khojandi, A., Haque, A. M., Brakewood, C., Jin, M. and Cherry, C. (2022). Performance Evaluation of Mode Choice Models under Balanced and Imbalanced Data Assumptions. Transportation Letters, 14(8), 920932.10.1080/19427867.2021.1955567CrossRefGoogle Scholar
Rigas, K. (2009). Boat or Airplane? Passengers’ Perceptions of Transport Services to Islands. The Example of the Greek Domestic Leisure Market. Journal of Transport Geography, 17(5), 396401.10.1016/j.jtrangeo.2008.07.005CrossRefGoogle Scholar
Rigas, K.(2012). Connecting Island Regions: A Qualitative Approach to the European Experience. SPOUDAI-Journal of Economics and Business, 62(3/4), 3053.Google Scholar
Rutz, W. O. and Coull, J. R. (1996). Inter-Island Passenger Shipping in Indonesia: Development of the System: Present Characteristics and Future Requirements. Journal of Transport Geography, 4(4), 275286.10.1016/S0966-6923(96)00028-2CrossRefGoogle Scholar
Sakib, N., Appiotti, F., Magni, F., Maragno, D., Innocenti, A., Gissi, E. and Musco, F. (2018). Addressing the Passenger Transport and Accessibility Enablers for Sustainable Development. Sustainability, 10(4), 903.10.3390/su10040903CrossRefGoogle Scholar
Salas, P., De la Fuente, R., Astroza, S. and Carrasco, J. A. (2022). A Systematic Comparative Evaluation of Machine Learning Classifiers and Discrete Choice Models for Travel Mode Choice in the Presence of Response Heterogeneity. Expert Systems with Applications, 193, 116253.10.1016/j.eswa.2021.116253CrossRefGoogle Scholar
Shakeel, K. and Hossein Rashidi, T. (2022). Incorporating Active and Non-active Mode Preferences for Departure Time Choice Behavior. Transportation Letters, 14(7), 697709.10.1080/19427867.2021.1925048CrossRefGoogle Scholar
Suárez-Alemán, A. (2016). Short Sea Shipping in Today’s Europe: A Critical Review of Maritime Transport Policy. Maritime Economics and Logistics, 18(3), 331351.Google Scholar
Suárez-Alemán, A., Campos, J. and Jiménez, J. L. (2014). The Economic Competitiveness of Short Sea Shipping: An Empirical Assessment for Spanish Ports. International Journal of Shipping and Transport Logistics, 7(1), 4267.10.1504/IJSTL.2015.065894CrossRefGoogle Scholar
Tanko, M., Cheemarkurthy, H., Kihl, S. H. and Garme, K. (2019). Water Transit Passenger Perceptions and Planning Factors: A Swedish Perspective. Travel Behaviour Society, 16, 2330.10.1016/j.tbs.2019.02.002CrossRefGoogle Scholar
Thrane and Christer (2015). Examining Tourists’ Long-Distance Transportation Mode Choices using a Multinomial Logit Regression Model. Tourism Management Perspectives, 15, 115121.10.1016/j.tmp.2014.10.004CrossRefGoogle Scholar
Tovar, B., Hernández, R. and Rodríguez-Déniz, H. (2015). Container Port Competitiveness and Connectivity: The Canary Islands Main Ports Case. Transport Policy, 38, 4051.10.1016/j.tranpol.2014.11.001CrossRefGoogle Scholar
Tsoi, K. H., Loo, B. P. (2021). Cutting the Loss: International Benchmarking of a Sustainable Ferry Business Model. Transportation Research Part A: Policy and Practice, 145, 167188.Google Scholar
Uchida, M., Oshima, Y. and Hondou, A. (2008). Evaluation Study on Passengers’ Convenience in Transfer Stations of Intercity Railway. Infrastructure Planning Review, 25, 741746.10.2208/journalip.25.741CrossRefGoogle Scholar
Vallejo-Pinto, J. A., Garcia-Alonso, L., Fernández, R. Á. and Mateo-Mantecón, I. (2019). Iso-Emission Map: A Proposal to Compare the Environmental Friendliness of Short Sea Shipping vs Road Transport. Transportation Research Part D: Transport Environment, 67, 596609.10.1016/j.trd.2019.01.015CrossRefGoogle Scholar
Yang, C. and Chen, A. (2009). Sensitivity Analysis of the Combined Travel Demand Model with Applications. European Journal of Operational Research, 198(3), 909921.10.1016/j.ejor.2008.09.044CrossRefGoogle Scholar
Zhang, S., Yang, Y., Zhen, F., Lobsang, T. and Li, Z. (2021). Understanding the Travel Behaviors and Activity Patterns of the Vulnerable Population Using Smart Card Data: An Activity Space-Based Approach. Journal of Transport Geography, 90, 102938.10.1016/j.jtrangeo.2020.102938CrossRefGoogle Scholar