Skip to main content
×
×
Home

Predicting the Success Rate of Long-baseline GPS+Galileo (Partial) Ambiguity Resolution

  • Dennis Odijk (a1), Balwinder S. Arora (a1) and Peter J.G. Teunissen (a1) (a2)
Abstract

This contribution covers precise (cm-level) relative Global Navigation Satellite System (GNSS) positioning for which the baseline length can reach up to a few hundred km. Carrier-phase ambiguity resolution is required to obtain this high positioning accuracy within manageable observation time spans. However, for such long baselines, the differential ionospheric delays hamper fast ambiguity resolution as based on current dual-frequency Global Positioning System (GPS). It is expected that the modernization of GPS towards a triple-frequency system, as well as the development of Galileo towards a full constellation will be beneficial in speeding up long-baseline ambiguity resolution. In this article we will predict ambiguity resolution success rates for GPS+Galileo for a 250 km baseline based on the ambiguity variance matrix, where the Galileo constellation is simulated by means of Yuma almanac data. From our studies it can be concluded that ambiguity resolution will likely become faster (less than ten minutes) in the case of GPS+Galileo when based on triple-frequency data of both systems, however much shorter times to fix the ambiguities (one-two minutes) can be expected when only a subset of ambiguities is fixed instead of the complete vector (partial ambiguity resolution).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predicting the Success Rate of Long-baseline GPS+Galileo (Partial) Ambiguity Resolution
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predicting the Success Rate of Long-baseline GPS+Galileo (Partial) Ambiguity Resolution
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predicting the Success Rate of Long-baseline GPS+Galileo (Partial) Ambiguity Resolution
      Available formats
      ×
Copyright
Corresponding author
(E-mail: d.odijk@curtin.edu.au)
References
Hide All
Arora, B.S. (2012). Evaluation of ambiguity success rates based on multi-frequency GPS and Galileo. MPhil thesis, Curtin University, Perth.
Cocard, M., Bourgon, S., Kamali, O. and Collins, P. (2008). A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of Geodesy, 82, 555564.
Colomina, I., Miranda, C., Pares, M.E., Andreotti, M. and Hill, C. (2011). The accuracy potential of Galileo E5/E1 pseudoranges for surveying and mapping. Proceedings of ION GNSS-2011, Portland, OR, 19–23 September, 2332–2340.
Corbett, S.J. and Cross, P.A. (1995). GPS single epoch ambiguity resolution. Survey Review, 33(257), 149160.
Dai, L., Eslinger, D. and Sharpe, T. (2007). Innovative algorithms to improve long range RTK reliability and availability. Proceedings ION NTM-2007, San Diego, CA, 22–24 January, 860–872.
De Bakker, P.F., Tiberius, C.C.J.M., van der Marel, H. and van Bree, R.J.P. (2012). Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals. GPS Solutions, 16, 5364.
Dow, J.M., Neilan, R.E. and Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83, 191198.
Jonkman, N.F., Teunissen, P.J.G., Joosten, P. and Odijk, D. (2000). GNSS long baseline ambiguity resolution: Impact of a third navigation frequency. Geodesy Beyond 2000 – The Challenges of the First Decade. International Association of Geodesy Symposia, 121, 349354.
Milbert, D. (2005). Influence of pseudorange accuracy on phase ambiguity resolution in various GPS modernization scenarios. Navigation, 52(1), 2938.
Odijk, D. (2008). What does “geometry-based” and “geometry-free” mean in the context of GNSS? InsideGNSS, March/April, 2224.
Odijk, D. and Teunissen, P.J.G. (2008). ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. Journal of Geodesy, 82, 473492.
Richtert, T. and El-Sheimy, N. (2005). Ionospheric modeling – The key to GNSS ambiguity resolution. GPS World, June, 3540.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophysical Monograph Series, 15, 247251.
Sauer, K., Vollath, U. and Amarillo, F. (2004). Three and four carriers for reliable ambiguity resolution. Proceedings of ENC-GNSS 2004, Rotterdam, The Netherlands, 16–19 May.
Takasu, T. and Yasuda, A. (2010). Kalman-filter-based integer ambiguity resolution strategy for long-baseline RTK with ionosphere and troposphere estimation. Proceedings of ION GNSS-2010, Portland, OR, 21–24 September, 161–171.
Teunissen, P.J.G. (1994). A new method for fast carrier-phase ambiguity estimation. Proceedings of IEEE-PLANS 1994, 562573.
Teunissen, P.J.G. (1997a). On the GPS widelane and its decorrelating property. Journal of Geodesy, 71, 577587.
Teunissen, P.J.G. (1997b). The geometry-free GPS ambiguity search space with a weighted ionosphere. Journal of Geodesy, 71, 370383.
Teunissen, P.J.G. (1999). An optimality property of the integer least-squares estimator. Journal of Geodesy, 73, 587593.
Teunissen, P.J.G., de Jonge, P.J. and Tiberius, C.C.J.M. (1997). The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation time spans. Journal of Geodesy, 71, 589–383.
Teunissen, P.J.G., Joosten, P. and Tiberius, C.C.J.M. (1999). Geometry-free ambiguity success rates in case of partial fixing. Proceedings of ION NTM-1999, San Diego, CA, 25–27 January, 201–207.
Teunissen, P.J.G. and Odijk, D. (2003). Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of Geodesy, 76, 523535.
Tiberius, C., Pany, T., Eissfeller, B., de Jong, K., Joosten, P. and Verhagen, S. (2002). Integral GPS-Galileo ambiguity resolution. Proceedings of ENC-GNSS 2002, Copenhagen, Denmark, 27–30 May.
Verhagen, S. (2003). On the approximation of the integer least-squares success rate: which lower or upper bound to use? Journal of Global Positioning Systems, 2(2), 117124.
Verhagen, S., Teunissen, P. and Odijk, D. (2007). Carrier-phase ambiguity success rates for integrated GPS-Galileo satellite navigation. Proceedings of Space, Aeronautical and Navigational Electronics Symposium, SANE2007, 107(2), 139144.
Zhang, W., Cannon, M.E., Julien, O. and Alves, P. (2003). Investigation of combined GPS/Galileo cascading ambiguity resolution schemes. Proceedings of ION GNSS-2003, Portland, OR, 9–12 September, 2599–2610.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Navigation
  • ISSN: 0373-4633
  • EISSN: 1469-7785
  • URL: /core/journals/journal-of-navigation
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 222 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd July 2018. This data will be updated every 24 hours.