Skip to main content Accesibility Help
×
×
Home

Probabilistic Analysis of the Impact of Vessel Speed Restrictions on Navigational Safety: Accounting for the Right Whale Rule

  • Matteo Convertino (a1) (a2) (a3) and L. James Valverde (a4)
Abstract

The Right Whale Sighting Advisory System (RWSAS) is a National Oceanic and Atmospheric Administration (NOAA) Fisheries program designed to reduce collisions between vessels and critically endangered North Atlantic right whales. The vessel speed restriction that is part of the RWSAS presents navigation stakeholders with numerous challenges, owing to concerns about increased risks of ship grounding and collisions within ports. In this paper, we present a multi-methodology framework for assessing the impact of the vessel speed restriction on navigational safety. Empirically, we base our discussion in a first-order analysis of ship grounding risk for the Charleston Entrance Channel. Our analysis proceeds in three parts. We begin by using fault and event tree analyses to assess a relevant set of grounding-related event progression and failure probabilities. The influence of alternative vessel speed restrictions on ship grounding risk are then explored via a Bayesian network model that utilises the previously specified fault and event tree models for its partial specification and enumeration. Our analysis suggests that the speed restriction can, under certain reasonable assumptions, be seen to adversely impact the risk of ship grounding accidents in the Charleston Entrance Channel. We conclude with a summary of our findings and recommendations for future research.

Copyright
Corresponding author
(E-mail: matteoc@umn.edu)
References
Hide All
Amrozowicz, M., Brown, A. and M, Golay. (1997). A Probabilistic Analysis of Tanker Groundings. In 7th International Offshore and Polar Engineering Conference, Honolulu, Hawaii.
Antao, P. and Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 2, 107116.
Bobbio, A., Portinale, L., Minichino, M. and Ciancamerla, E. (2001). Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliability Engineering & System Safety, 71, 249260.
Conn, P.B. and Silber, G.K. (2014). Vessel speed restrictions reduce risk of collision-related mortality for North Atlantic Right Whales. Ecosphere, 43, 115.
Dougherty, E.M. and Fragola, J.R. (1988). Human reliability analysis: a systems engineering approach with nuclear power plant applications. Wiley.
Dunne, G. (1972). Collisions and groundings. Journal of Navigation, 25(1), 113121.
Friis-Hansen, P., Ravn, E. and Engberg, P. (2009). Basic modelling principles for prediction of collision and grounding frequencies. Technical report, Technical University of Denmark.
Gende, S.M., Hendrix, A.N., Harris, K.R., Eichenlaub, B., Nielsen, J. and Pyare., S. (2011). A Bayesian approach for understanding the role of ship speed in whale-ship encounters. Ecology Applications, 21(6), 2232–40.
Gertman, D.I. and Blackman, H.S. (1994). Human Reliability and Safety Analysis Data Handbook. Wiley.
Graziano, A., Teixeira, A.P., and Guedes Soares, C. (2016). Classification of human errors in grounding and collision accidents using the TRACEr taxonomy. Safety Science, 86, 245257.
Journee, J. and Pinkster, J. (2002). Introduction in ship hydromechanics. Technical Report MT519, Delft University of Technology.
Kose, E., Dincer, A., and Durukanoglu, H. (1998). Risk assessment of fishing vessels. Turkish Journal of Engineering and Environmental Science, 22, 417428.
Laist, D.W., Knowlton, A.R., and Pendleton, D. (2014). Effectiveness of mandatory vessel speed limits for protecting North Atlantic Right Whales. Endangered Species Research, 23, 133147.
Leva, M.C., Friis-Hansen, P., Sonne Ravn, E. and Lepsoe, A. (2006). SAFEDOR: a practical approach to model the action of an Officer of the Watch in collision scenarios. Proceedings of the European Safety and Reliability Conference, 27952804.
Ramos Martins, M. and Coelho Maturana, M. (2010). Human error contribution in collision and grounding of oil tankers. Risk Analysis, 30(4), 674698.
Ramos Martins, M. and Coelho Maturanam, M. (2013). Application of Bayesian belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents. Reliability Engineering and System Safety, 110, 89109.
Mazaheri, A. (2009). Probabilistic modelling of ship grounding. Technical Report TKK-AM-10, Helsinki Univeristy of Technology, Department of Applied Mechanics.
Mazaheri, A., Montewka, J., and Kujala, P. (2014). Modelling the risk of ship grounding — a literature review from a risk management perspective. WMU Journal of Maritime Affairs, 13(2), 269297.
Mazaheri, A., Montewka, J., Kotilainen, P., Edvard Sormunen, O-V., and Kujala, P. (2015). Assessing grounding frequency using ship traffic and waterway complexity. Journal of Navigation, 68(1), 89106.
Mazaheri, A., Montewka, J. and Kujala, P. (2016). Towards an evidence-based probabilistic risk model for ship-grounding accidents. Safety Science, 86, 195210.
Mellinger, D.K., Nieukirk, S.L., Klinck, K., Klinck, H., Dziak, R.P., Clapham, P.J. and Brandsdottir., B. (2011). Confirmation of right whales near a nineteenth-century whaling ground east of southern Greenland. Biology Letters, 7, 411413
Montewka, J., Hinz, T., Kujala, P., and Matusiak, J. (2010). Probability modelling of vessel collisions. Reliability Engineering and System Safety, 95(5), 573589.
Montewka, J., Goerlandt, F., Innes-Jones, G., Owen, D., Hifi, Y. and Puisa, R. (2017). Enhancing human performance in ship operations by modifying global design factors at the design stage. Reliability Engineering and System Safety, 159, 283300.
NOAA (2017). National Data Buoy Station 41004; downloaded from http://www.ndbc.noaa.gov/station_history. php?station=41004.
Pietrzykowski, Z. (2007). Assessment of navigational safety in vessel traffic in an open area. International Journal on Marine Navigation and Safety of Sea Transportation, 1(11), 8588.
Pillay, A. and Wang, J. (2003). Technology and Safety of Marine Systems. Elsevier Science.
Redfern, J.V., Mckenna, M.F., Moore, T.J., Calambokidis, J., Deangelis, M.L., Becker, E.A., Barlow, J., Forney, K. A., Fiedler, P.C., and Chivers, S.J. (2013). Assessing the risk of ships striking large whales in marine spatial planning. Conservation Biology, 27(2), 292302.
Silber, G.K., Adams, J.D. and Fonnesbeck, C.J. (2014). Compliance with vessel speed restrictions to protect North Atlantic Right Whales. PeerJ 2:e399 https://doi.org/10.7717/peerj.399.
Soares, C. and Teixeira, A. (2001). Risk assessment in maritime transportation. Reliability Engineering & System Safety, 74, 299309.
Van der Hoop, J.M., Vanderlaan, A.S.M., Cole, T.V.N., Henry, A.G., Hall, L., Mase-Guthrie, B., Wimmer, T., and Moore, M.J. (2014). Vessel strikes to large whales before and after the 2008 ship strike rule. Conservation Letters, 8, 2432.
Vanderlaan, A., and Taggart, C.T. (2007). Vessel collisions with whales: the probability of lethal injury based on vessel speed. Marine Mammal Science, 23(1), 144156.
Vanderlaan, A., Corbett, J.J., Green, S.L., Callahan, J.A., Wang, C., Kenney, R.D., Taggart, C.T., and Firestone, J. (2009). Probability and mitigation of vessel encounters with North Atlantic Right Whales. Endangered Species Research, 6, 273285.
Wennink, C.J. (1992). Collision and grounding risk analysis for ships navigating in confined waters. Journal of Navigation, 45(1), 8090.
Wiley, D.N., Thompson, M., Pace, R.M. III, and Levenson, J. (2011). Modeling speed restrictions to mitigate lethal collisions between ships and whales in the Stellwagen Bank National Marine Sanctuary, USA. Biological Conservation, 144(9), 23772381.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Navigation
  • ISSN: 0373-4633
  • EISSN: 1469-7785
  • URL: /core/journals/journal-of-navigation
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Convertino and Valverde supplementary material
Convertino and Valverde supplementary material 1

 PDF (293 KB)
293 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed