Skip to main content Accessibility help
×
Home

Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations

  • Changsheng Cai (a1), Zhizhao Liu (a2) and Xiaomin Luo (a1)

Abstract

Single-frequency Precise Point Positioning (PPP) using a Global Navigation Satellite System (GNSS) has been attracting increasing interest in recent years due to its low cost and large number of users. Currently, the single-frequency PPP technique is mainly implemented using GPS observations. In order to improve the positioning accuracy and reduce the convergence time, we propose the combined GPS/GLONASS Single-Frequency (GGSF) PPP approach. The approach is based on the GRoup And PHase Ionospheric Correction (GRAPHIC) to remove the ionospheric effect. The performance of the GGSF PPP was tested using both static and kinematic datasets as well as different types of precise satellite orbit and clock correction data, and compared with GPS-only and GLONASS-only PPP solutions. The results show that the GGSF PPP accuracy degrades by a few centimetres using rapid/ultra-rapid products compared with final products. For the static GGSF PPP, the position filter typically converges at 71, 33 and 59 minutes in the East, North and Up directions, respectively. The corresponding positioning accuracies are 0·057, 0·028 and 0·121 m in the East, North and Up directions. Both positioning accuracy and convergence time have been improved by approximately 30% in comparison to the results from GPS-only or GLONASS-only single-frequency PPP. A kinematic GGSF PPP test was conducted and the results illustrate even more significant benefits of increased accuracy and reliability of PPP solutions by integrating GPS and GLONASS signals.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Bock, H., Jäggi, A., Dach, R., Schaer, S. and Beutler, G. (2009). GPS single-frequency orbit determination for low earth orbiting satellites. Advances in Space Research, 43(5), 783791.
Chen, K. and Gao, Y. (2005). Real-time precise point positioning using single frequency data. Proceedings of ION GNSS 2005, 13–16 Sep 2005, Long Beach, California, USA, 15141523.
Cai, C. and Gao, Y. (2007). Performance analysis of precise point positioning based on combined GPS and GLONASS. Proceedings of ION GNSS 2007, 25–28 Sep 2007, Fort Worth, Texas, USA, 858865.
Cai, C. and Gao, Y. (2012). Modelling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, doi: 10.1007/s10291-012-0273-9.
Gao, Y., Zhang, Y. and Chen, K. (2006). Development of a real-time single-frequency precise point positioning system and test results. Proceedings of ION GNSS 2006, 26–29 Sep 2006, Fort Worth, Texas, USA, 22972303.
Héroux, P., Gao, Y., Kouba, J., Lahaye, F., Mireault, Y., Collins, P., Macleod, K., Tétreault, P. and Chen, K. (2004). Products and applications for precise point positioning – moving towards real-time. Proceedings of ION GNSS 2004, 21–24 Sep 2004, Long Beach, California, USA, 18321843.
Hesselbarth, A. and Wanninger, L. (2008). Short-term stability of GNSS satellite clocks and its effects on precise point positioning. Proceedings of ION GNSS 2008, 16–19 Sep 2008, Savannah, Georgia, USA, 18551863.
Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, 23(3), 325331, doi: 10.1109/TAES.1987.310829.
Kouba, J. and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 1228.
Le, A. Q. and Tiberius, C. (2007). Single-frequency precise point positioning with optimal filtering. GPS Solutions, 11(1), 6169, doi: 10.1007/s10291-006-0033-9.
Melgard, T., Vigen, E., Jong, K. D., Lapucha, D., Visser, H. and Oerpen, O. (2009). G2-the first real-time GPS and GLONASS precise orbit and clock service. Proceedings of ION GNSS 2009, 22–25 Sep 2009, Savannah, Georgia, USA, 18851891.
Muellerschoen, R. J., Iijima, B., Meyer, R., Bar-Sever, Y. and Accad, E. (2004). Real-time point-positioning performance evaluation of single-frequency receivers using NASA's global differential GPS system. Proceedings of ION GNSS 2004, 21–24 Sep 2004, Long Beach, California, USA, 18721880.
Odijk, D., Teunissen, P. J. G. and Zhang, B. (2012). Single-frequency integer ambiguity resolution enabled precise point positioning. Journal of Surveying Engineering, doi: 10.1061/(ASCE)SU.1943-5428.0000085.
Øvstedal, O. (2002). Absolute positioning with single-frequency GPS receivers. GPS Solutions, 5(4), 3344, doi: 10.1007/PL00012910.
Píriz, R., Calle, D., Mozo, A., Navarro, P., Rodríguez, D. and Tobías, G. (2009). Orbits and clocks for GLONASS precise-point-positioning. Proceedings of ION GNSS 2009, 22–25 Sep 2009, Savannah, Georgia, USA, 24152424.
van Bree, R. J. P., Tiberius, C. C. J. M. and Hauschild, A. (2009). Real time satellite clocks in single-frequency precise point positioning. Proceedings of ION GNSS 2009, 22–25 Sep 2009, Savannah, Georgia, USA, 24002414.
van Bree, R. J. P. and Tiberius, C. C. J. M. (2011). Real-time single-frequency precise point positioning: accuracy assessment. GPS Solutions, doi: 10.1007/s10291-011-0228-6.
Yunck, T. P. (1996). Orbit determination. In: Parkinson, B. W., Spilker, J. J. (eds). Global positioning system—theory and applications. AIAA, Washington D.C., USA.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 50055017, doi: 10.1029/96JB03860.

Keywords

Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations

  • Changsheng Cai (a1), Zhizhao Liu (a2) and Xiaomin Luo (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed