Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T08:38:16.291Z Has data issue: false hasContentIssue false

Study of the applicability of radio signals emitted by lightning for long-range navigation

Published online by Cambridge University Press:  25 January 2024

Pavel Kovář*
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Pavel Puričer
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Jan Mikeš
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
*
Corresponding author: Pavel Kovář; Email: kovar@fel.cvut.cz

Abstract

The complementary radio navigation system based on the Very Low Frequency signals produced by lightning is an alternative to today's Global Navigation Satellite Systems. The system operates on different principles and uses different radio frequency bands. The signals have higher availability in problematic places. The analyses based on the historical data of Word Wide Lightning Location Network demonstrated the good availability of the service, sufficient number of lightning strokes and good geometry calculated for a 10-second time window for positioning based on the Time of Arrival principle. The geometry was evaluated with the help of the Geometric Dilution of Precision coefficient. The Geometric Dilution of Precision median for the reception of the lightning signal from a range of 10,000 km moves around one except at the southern polar regions and the probability of the service availability exceeds 80%.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. and Christian, H. J. (2016). Where are the lightning hotspots on earth? Bulletin of the American Meteorological Society, 97(11), 20512068.CrossRefGoogle Scholar
Bazelyan, E. M. and Raizer, Y. P. (2000). Lightning Physics and Lightning Protection (1st ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Bermudez, J. L., Rachidi, F., Rubinstein, M., Janischewskyj, W., Shostak, V. O., Pavanello, D., Chang, J. S., Hussein, A. M., Nucci, C. A. and Paolone, M. (2004). Far-field-current relationship based on the TL model for lightning return strokes to elevated strike objects. IEEE Transactions on Electromagnetic Compatibility, 47(1), 146159.CrossRefGoogle Scholar
Chapman, F. W., Jones, D. L., Todd, J. D. W. and Challinor, R. A. (1966). Observations on the propagation constant of the earth-ionosphere waveguide in the frequency band 8 c/s to 16 kc/s. Radio Science, 1(11), 12731282.CrossRefGoogle Scholar
Chen, Ch. S., Chiu, Y. J., Lee, Ch. T. and Lin, J. M. (2013). Calculation of weighted geometric dilution of precision. Journal of Applied Mathematics, 2013, 953048.CrossRefGoogle Scholar
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M. and Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research, 108(D1), 4-14-15.CrossRefGoogle Scholar
Cooray, H. (2010). Lightning Protection. London, UK: The Institution of Engineering and Technology.CrossRefGoogle Scholar
Egashira, S. and Taguchi, M. (1985). Analysis of umbrella antenna at the omega navigation station. IEEE Transactions on Antennas and Propagation, 33(12), 14011403.Google Scholar
Horvat, T. (2006). Understanding Lightning and Lightning Protection. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
Hou, W., Zhang, Q., Zhang, J., Wang, L. and Shen, Y. (2018). A new approximate method for lightning-radiated ELF/VLF ground wave propagation over intermediate ranges. International Journal of Antennas and Propagation, 2018, 9353294.CrossRefGoogle Scholar
Hutchins, L. M., Holzworth, L. H., Brundell, J. B. and Rodger, C. J. (2012). Relative detection efficiency of the world wide lightning location network. Radio Science, 47(06), 19.CrossRefGoogle Scholar
Johnson, G., Shalaev, R., Hartnett, R., Swaszek, P. and Narins, M. (2005). Can LORAN meet GPS backup requirements? IEEE Aerospace and Electronic Systems Magazine, 20(2), 312.Google Scholar
Johnson, G., Wiggins, M., Swaszek, P. F., Hartshorn, L. and Hartnett, R. (2006). Possible optimizations for the us loran system. Proceedings of IEEE/ION PLANS, San Diego, 695–704.CrossRefGoogle Scholar
Klimov, P. A., Kaznacheeva, M. A., Khrenov, B. A., Garipov, G. K., Bogomolov, V. V., Panasyuk, M. I., Svertilov, S. I. and Cremonini, R. (2018). UV transient atmospheric events observed far from thunderstorms by the Vernov satellite. IEEE Geoscience and Remote Sensing Letters, 15(8), 11391143.CrossRefGoogle Scholar
Lewin, P. L., Tran, T. N., Swaffield, D. J. and Hallstrom, J. K. (2008). Zero-phase filtering for lightning impulse evaluation: a K-factor Filter for the Revision of IEC60060-1 and -2. IEEE Transactions on Power Delivery, 23(1), 312.CrossRefGoogle Scholar
Liu, H., Qiu, S. and Dong, W. (2018). The three-dimensional locating of VHF broadband lightning interferometers. Atmosphere (Basel), 9(8), 114.Google Scholar
Lo, S. C., Peterson, B. B. and Enge, P. K. (2007). Loran data modulation: a primer. IEEE AE Systems Magazine, 22(9), 3151.CrossRefGoogle Scholar
Lojou, J., Honma, N., Cummins, K. L., Said, R. K. and Hembury, N. (2011). Latest developments in global and total lightning detection. 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 924–932.Google Scholar
Morris, P. B. and Casswell, R. M. (1994). Evaluation of the 1993 Omega propagation correction model. In Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS’94, Las Vegas, NV, USA, 1994, 69–76.Google Scholar
Narita, T., Wanke, E., Sato, M., Sakanoi, T., Kumada, A., Kamogawa, M., Hirohiko, I., Harada, S., Kameda, T., Tsuchiya, F. and Kaneko, E. (2018). A study of lightning location system (Blitz) based on VLF sferics. 34th International Conference on Lightning Protection (ICLP), Rzeszow, Poland.CrossRefGoogle Scholar
Olsen, D. L. (1991). Federal radionavigation policy and the land transportation user. Vehicle Navigation and Information Systems Conference Troy, USA, 627–634.CrossRefGoogle Scholar
Parmantier, J. P., Issac, F. and Gobin, V. (2012). Indirect effects of lightning on aircraft and rotorcraft. Journal of Aerospace Lab (5), 127.Google Scholar
Rakov, V. A. and Uman, A. (2007). Lightning Physics and Effects. Cambridge, England: Cambridge University Press.Google Scholar
Rison, W., Krehbiel, P. L., Stock, R. W., Edens, H. E., Shao, X., Thomas, R. J., Stanley, M. A. and Zhang, Y. (2016). Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nature communications, 7, 10721.Google Scholar
Sakran, F. C. and Swanson, E. R. (1998). Omega: the end-what it was, what it did, what now? In IEEE 1998 Position Location and Navigation Symposium, Palm Springs, CA, USA, 85–92.Google Scholar
Shao, X. and Jacobson, A. R. (2009). Model simulation of very low-frequency and low-frequency lightning signal propagation over intermediate ranges. in IEEE Transactions on Electromagnetic Compatibility, 51(3), 519525.Google Scholar
Sonnadara, U., Cooray, V. and Fernando, M. (2006). The lightning radiation field spectra of cloud flashes in the interval from 20 kHz to 20 MHz. IEEE Transactions on Electromagnetic Compatibility, 48(1), 234239.CrossRefGoogle Scholar
Sun, Z., Qie, X., Liu, M., Cao, D. and Wang, D. (2013). Lightning VHF radiation location system based on short-baseline TDOA technique: validation in rocket-triggered lightning. Atmospheric Research, 129–130, 5866.Google Scholar
Swanson, E. R. (1983). Omega. Proceedings of the IEEE, 71(10), 11401155.CrossRefGoogle Scholar
Warren, R. S., Morris, P. B., Gupta, R. R. and Desrochers, G. R. (1992). Omega system performance assessment. In IEEE PLANS 92 Position Location and Navigation Symposium Record, Monterey, CA, USA, 88–95.Google Scholar
Wenzel, R. J. (1989). Omega: system status update-1988. Aerospace and Electronic Systems Magazine IEEE, 4(7), 2433.CrossRefGoogle Scholar
Yuan, J., Yan, W., Li, S. and Hua, Y. (2020). Demodulation method for Loran-C at low SNR based on envelope correlation-phase detection. Sensors, 20, 4535.Google Scholar