Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-11T03:47:00.982Z Has data issue: false hasContentIssue false

A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy

Published online by Cambridge University Press:  26 December 2019

Ernest Osei*
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ONCanada
Pascale Walters
Affiliation:
Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
Olivia Masella
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Quinton Tennant
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Amber Fishwick
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Eugenia Dadzie
Affiliation:
Department of Biology, University of Waterloo, Waterloo, ON, Canada
Anmol Bhangu
Affiliation:
Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
Johnson Darko
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ONCanada
*
Author for correspondence: Ernest Osei, Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada. E-mail: ernest.osei@grhosp.on.ca

Abstract

Background:

Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.

Materials and methods:

This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.

Conclusion:

Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.

Type
Literature Review
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miranda-Filho, A, Piñeros, M, Soerjomataram, I et al. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol 2017; 19 (2): 270280. doi: 10.1093/neuonc/now166.Google ScholarPubMed
Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics. Canadian Cancer Society 2019. https://www.cancer.ca/~/media/cancer.ca/CW/cancer%20information/cancer%20101/Canadian%20cancer%20statistics/Canadian-Cancer-Statistics-2019-EN.pdf?la=en. Accessed on 11th October 2019.Google Scholar
National Brain Tumor Society. Brain tumors by the numbers 2019. https://events.braintumor.org/wp-content/uploads/2019/02/BrainTumorsBytheNumbers_Jan_2019.pdf. Accessed on 11th October 2019.Google Scholar
Quach, P, El Sherif, R, Gomes, J et al. A systematic review of the risk factors associated with the onset and progression of primary brain tumours. NeuroToxicology 2017; 61: 214232.CrossRefGoogle ScholarPubMed
Staedtke, V, Dzaye, O, Holdhoff, M. Actionable molecular biomarkers in primary brain tumors. Trends Cancer 2016; 2 (7): 338349.CrossRefGoogle ScholarPubMed
Szopa, W, Burley, T A, Kramer-Marek, G et al. Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. BioMed Res Int 2017; 2017: 13. https://doi.org/10.1155/2017/8013575.CrossRefGoogle ScholarPubMed
Haynes, H R, Camelo-Piragua, S, Kurian, K M. Prognostic and predictive biomarkers in adult and pediatric gliomas: toward personalized treatment. Front Oncol 2014; 4 (47). doi: 10.3389/fonc.2014.00047.CrossRefGoogle Scholar
Osei, E, Lumini, J, Gunasekara, D, Osei, B, Asare, A, Laflamme, R. A review of predictive, prognostic and diagnostic biomarkers for non-small cell lung cancer: towards personalised and targeted cancer therapy. J Radiother Pract (in press).Google Scholar
Molenaar, R J, Maciejewski, J P, Wilmink, J W et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018; 37 (15), 19491960.CrossRefGoogle ScholarPubMed
Ballman, K V. Biomarker: predictive or Prognostic? J Clin Oncol 2015; 33 (33): 39683971.CrossRefGoogle ScholarPubMed
Goossens, N, Nakagawa, S, Sun, X et al. Cancer biomarker discovery and validation. Transl Cancer Res 2015; 4 (3): 256269. doi: 10.3978/j.issn.2218-676X.2015.06.04.Google Scholar
Yang, H, Ye, D, Guan, K L et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012; 18 (20): 55625571. doi: 10.1158/1078-0432.CCR-12-1773.CrossRefGoogle ScholarPubMed
Mukasa, A, Takayanagi, S, Saito, K et al. Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci 2012; 103 (3): 587592.CrossRefGoogle ScholarPubMed
Suchorska, B, Kraus, T, Biczok, A et al. Correlation of IDH mutation, 1p/19q co-deletion and 18FET-PET derived time-to-peak analysis as prognostic markers in glioma. J Clin Oncol 2016; 34 (15). suppl: 2058.CrossRefGoogle Scholar
Yan, H, Parsons, D W, Jin, G et al. IDH1 and IDH2 mutations in gliomas. New England J Med 2009; 360 (8): 765–73.CrossRefGoogle ScholarPubMed
Cohen, A L, Holmen, S L, Colman, H. IDH1 and IDH2 mutations in gliomas. Current Neurol Neurosci Reports 2013; 13 (5): 345.CrossRefGoogle ScholarPubMed
Louis, D N, Perry, A, Reifenberger, G et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803820.CrossRefGoogle ScholarPubMed
Juratli, T A, Kirsch, M, Geiger, K et al. The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neurooncol 2012; 110 (3): 325333.CrossRefGoogle ScholarPubMed
Chen, J R, Yao, Y, Xu, H Z et al. Isocitrate Dehydrogenase (IDH)1/2 Mutations as prognostic markers in patients with glioblastomas. Medicine 2016; 95 (9): e2583. doi: 10.1097/MD.0000000000002583.CrossRefGoogle ScholarPubMed
Milella, M, Falcone, I, Conciatori, F et al. PTEN: multiple functions in human malignant tumours. Front Oncol 2015; 5: 24.CrossRefGoogle Scholar
Li, J, Yen, C, Liaw, D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275 (5308): 19431947.CrossRefGoogle Scholar
Bazzichetto, C, Conciatori, F, Pallocca, M et al. PTEN as a prognostic/predictive biomarker in cancer: an unfulfilled promise? Cancers 2019; 11 (4): 435.CrossRefGoogle Scholar
Chen, C Y, Chen, J, He, L et al. PTEN: tumor suppressor and metabolic regulator. Front Endocrinol 2018; 9 (9): 338350. doi: 10.3389/fendo.2018.00338.CrossRefGoogle ScholarPubMed
Koul, D. PTEN signaling pathways in glioblastoma. Cancer Biol Therapy 2008; 7 (9): 13211325.CrossRefGoogle ScholarPubMed
Han, F, Hu, R, Yang, H et al. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis. OncoTargets Ther 2016; 9: 34853492.Google ScholarPubMed
Sasaki, H, Zlatescu, M C, Betensky, R A et al. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 2001; 159 (1): 359367. doi: 10.1016/S0002-9440(10)61702-6.CrossRefGoogle ScholarPubMed
Parsa, A T, Waldron, J S, Panner, A et al. Loss of tumour suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13 (1): 8488.CrossRefGoogle Scholar
Yang, Y, Shao, N, Luo, G et al. Mutations of PTEN gene in gliomas correlate to tumor differentiation and short-term survival rate. Anticancer Res 2010; 30 (3): 981985.Google ScholarPubMed
Yang, J M, Schiapparelli, P, Nguyen, H N et al. Characterization of PTEN mutations in brain cancer reveals that PTEN mono-ubiquitination promotes protein stability and nuclear localization. Oncogene 2017; 36: 36733685.CrossRefGoogle ScholarPubMed
Ohgaki, H, Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170 (5): 14451453. doi: 10.2353/ajpath.2007.070011.CrossRefGoogle ScholarPubMed
Zhang, Y, Dube, C, Gibert, M et al. The p53 pathway in glioblastoma. Cancers 2018; 10 (9): 297.CrossRefGoogle ScholarPubMed
Bogler, O, Huang, H J S, Kleihues, P et al. The p53 gene and its role in human brain tumours. Glia 1995; 15: 308327.CrossRefGoogle Scholar
Fulci, G, Ishii, N, Van Meir, E G. p53 and brain tumours: from gene mutations to gene therapy. Brain Pathol 1998; 8: 599613.CrossRefGoogle Scholar
Liu, B, Bhatt, D, Oltvai, Z N et al. Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Sci Reports 2014; 4 (6245): 112.Google ScholarPubMed
Badie, B, Kramar, M H, Lau, R et al. Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J Neurooncol 1998; 37 (3): 217222.CrossRefGoogle ScholarPubMed
Iwadati, Y, Fujimoto, S, Tagawa, M et al. Association of p53 gene mutation with decreased chemosensitivity in human malignant gliomas. Int J Cancer 1996; 69 (3): 236240 3.0.CO;2-5>CrossRefGoogle Scholar
Hsiao, M, Tse, V, Carmel, J et al. Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivo results in tumor suppression and Long-term survival. Biochem Biophys Res Commun 1997; 233 (2): 359364 CrossRefGoogle ScholarPubMed
Quan, J, Li, Y, Jin, M et al. Suppression of p53-inducible gene 3 is significant for glioblastoma progression and predicts poor patient prognosis. Tumor Biol 2017; 39 (3): 19. doi: 10.1177/1010428317694572.CrossRefGoogle ScholarPubMed
Karsy, M, Neil, J A, Guan, J et al. A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurgical Focus 2015; 38 (3): E4.CrossRefGoogle ScholarPubMed
Haase, S, Garcia-Fabiani, M B, Carney, S et al. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22 (7): 599613.CrossRefGoogle ScholarPubMed
Koschmann, C, Lowenstein, P R, Castro, M G. ATRX mutations and glioblastoma: impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability. Mol Cellular Oncol 2016; 3 (3): e1167158.CrossRefGoogle ScholarPubMed
Nandakumar, P, Mansouri, A, Das, S. The role of ATRX in glioma biology. Front Oncol 2017; 7: 236.CrossRefGoogle ScholarPubMed
Jiao, Y, Killela, P J, Reitman, Z J et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012; 3 (7): 709722.CrossRefGoogle ScholarPubMed
Schwartzentruber, J, Korshunov, A, Liu, X Y et al. Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482 (7384): 226231.CrossRefGoogle ScholarPubMed
Spiegl-Kreinecker, S, Lotsch, D, Ghanim, B et al. Prognostic quality of activating TERT promoter mutations in glioblastoma: interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro-Oncology 2015; 17 (9): 12311240.CrossRefGoogle ScholarPubMed
Vinagre, J, Almeida, A, Populo, H et al. Frequency of TERT promoter mutations in human cancers. Nat Commun 2013; 4 (2185): 16.CrossRefGoogle ScholarPubMed
Kim, H S, Kwon, M J, Song, J H et al. Clinical implications of TERT promoter mutation on IDH mutation and MGMT promoter methylation in diffuse gliomas. Pathol Res Pract 2018; 214 (6): 881888.CrossRefGoogle ScholarPubMed
Lee, Y, Koh, J, Kim, S I et al. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathologica Commun 2017; 5 (1): 62.CrossRefGoogle ScholarPubMed
Westermann, F, Muth, D, Benner, A et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol 2008; 9 (10): R150.CrossRefGoogle ScholarPubMed
Poole, C J, van Riggelen, J. MYC—master regulator of the cancer epigenome and transcriptome. Genes 2017; 8 (5): 142. doi: 10.3390/genes8050142.CrossRefGoogle Scholar
Dang, C V. MYC on the path to cancer. Cell 2012; 149 (1): 2235. doi: 10.1016/j.cell.2012.03.003.CrossRefGoogle Scholar
Roussel, M F, Robinson, G W. Role of MYC in medulloblastoma. Cold Spring Harbor Perspect Med 2013; 3 (11). doi: 10.1101/cshperspect.a014308.CrossRefGoogle Scholar
Wang, J, Wang, H, Li, Z et al. c-Myc is required for maintenance of glioma cancer stem cells. PloS One 2008; 3 (11). doi: 10.1371/journal.pone.0003769.CrossRefGoogle Scholar
Milde, T, Lodrini, M, Savelyeva, L et al. HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. J Neuro-Oncol 2012; 110: 335348.CrossRefGoogle ScholarPubMed
Pei, Y, Moore, C E, Wang, J et al. An animal model of MYC-driven medulloblastoma. Cancer Cell US Natl Library Med 2012; 21 (2): 155167.Google ScholarPubMed
Rickman, D S, Schulte, J H, Eilers, M. The expanding world of N-MYC-driven tumours. Cancer Discov 2018; 8 (2): 150163.CrossRefGoogle Scholar
Beltran, H. The N-myc oncogene: maximizing its targets, regulation, and therapeutic potential. Mol Cancer Res 2014; 12 (6): 815822.CrossRefGoogle ScholarPubMed
Valentijn, L J, Koster, J, Haneveld, F et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc Natl Acad Sci 2012; 109 (47): 1919019195.CrossRefGoogle ScholarPubMed
Eberhart, C G, Kratz, J, Wang, Y et al. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 2004; 63 (5): 441449.CrossRefGoogle ScholarPubMed
Wang, M, Zhou, C, Cai, R et al. Copy number gain of MYCN gene is a recurrent genetic aberration and favorable prognostic factor in Chinese pediatric neuroblastoma patients. Diagn Pathol 2013; 8: 5. doi: 10.1186/1746-1596-8-5.CrossRefGoogle ScholarPubMed
Estiar, M A, Javan, F, Zekri, A et al. Prognostic significance of MYCN gene amplification and protein expression in primary brain tumors: astrocytoma and meningioma. Cancer Biomarkers 2017; 19 (3): 341351.CrossRefGoogle ScholarPubMed
Neufeld, G, Cohen, T, Gengrinovitch, S et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13 (1): 922.CrossRefGoogle ScholarPubMed
Holmes, D I, Zachary, I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 2005; 6 (2): 209. doi: 10.1186/gb-2005-6-2-209.CrossRefGoogle ScholarPubMed
Montano, N, D’Alessandris, Q G, Izzo, A et al. Biomarkers for glioblastoma multiforme: status quo. J Clin Transl Res 2016; 2 (1): 310.Google ScholarPubMed
D’Alessandris, Q G, Martini, M, Cenci, T et al. VEGF isoforms as outcome biomarker for anti-angiogenic therapy in recurrent glioblastoma. Neurology 2015; 84: 19061908.CrossRefGoogle ScholarPubMed
D’Alessandris, Q G, Montano, N, Cenci, T et al. Targeted therapy with bevacizumab and erlotinib tailored to the molecular profile of patients with recurrent glioblastoma. Preliminary experience. Acta Neurochirurgica (Wien) 2013; 155 (1): 3340.CrossRefGoogle ScholarPubMed
Reardon, D A, Desjardins, A, Vredenburgh, J J et al. Metronomic chemotherapy with daily oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 2009; 101: 19861994.CrossRefGoogle ScholarPubMed
Zhao, H, Hou, C, Hou, A et al. Findings from Shandong cancer hospital in the area of vascular endothelial growth factor described (Concurrent expression of VEGF-C and neuropilin-2 is correlated with poor prognosis in glioblastoma). Tohoku J Exp Med 2016; 238: 8591 CrossRefGoogle Scholar
Schmitz, M, Temme, A, Senner, V et al. Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br JCancer 2007; 96 (8): 12931301.CrossRefGoogle ScholarPubMed
Garros-Regulez, L, Garcia, I, Carrasco-Garcia, E et al. Targeting SOX2 as a therapeutic strategy in glioblastoma. Front Oncol 2016; 6: 222.CrossRefGoogle ScholarPubMed
Annovazzi, L, Mellai, M, Caldera, V et al. SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics-Proteomics 2011; 8 (3): 139–47.Google ScholarPubMed
Khan, I N, Ullah, N, Hussein, D et al. Current and emerging biomarkers in tumors of the central nervous system: possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2017; 52: 85102 CrossRefGoogle ScholarPubMed
Alonso, M M, Diez-Valle, R, Manterola, L et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PloS One 2011; 6 (11): doi: 10.1371/journal.pone.0026740.CrossRefGoogle Scholar
Gangemi, R M R, Griffero, F, Marubbi, D et al. SOX2 silencing in glioblastoma tumor‐initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009; 27 (1): 4048.CrossRefGoogle ScholarPubMed
Agarwal, P, Kabir, F M L, DeInnocentes, P et al. Tumor suppressor gene p16/INK4A/CDKN2A and its role in cell cycle exit, differentiation, and determination of cell fate, Tumor Suppressor Genes, Yue Cheng, IntechOpen, 3rd February 2012. https://www.intechopen.com/books/tumor-suppressor-genes/tumor-suppressor-gene-p16-ink4a-cdkn2a-and-its-role-in-cell-cycle-exit-differentiation-and-determina.CrossRefGoogle Scholar
Romagosa, C, Simonetti, S, Lopez-Vicente, L et al. p16 Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011; 30 (18): 20872097.CrossRefGoogle ScholarPubMed
Serrano, M. The tumor suppressor protein p16INK4a. Exp Cell Res 1997; 237 (1): 713.CrossRefGoogle ScholarPubMed
Park, S H, Won, J, Kim, S I et al. Molecular testing of brain tumor. J Pathol Transl Med 2017; 51 (3): 205223. doi: 10.4132/jptm.2017.03.08.CrossRefGoogle ScholarPubMed
Sibin, M K, Bhat, D I, Narasingarao, K V L et al. CDKN2A (p16) mRNA decreased expression is a marker of poor prognosis in malignant high-grade glioma. Tumour Biol 2015; 36 (10): 76077614. doi: 10.1007/s13277-015-3480-5.CrossRefGoogle ScholarPubMed
Liu, W, Lv, G, Li, Y et al. Downregulation of CDKN2A and suppression of cyclin D1 gene expressions in malignant gliomas. J Exp Clin Cancer Res 2011; 30 (1): 76.CrossRefGoogle ScholarPubMed
Reis, G F, Pekmezci, M, Hansen, H M et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol 2015; 74 (5): 442452. doi: 10.1097/NEN.0000000000000188.CrossRefGoogle ScholarPubMed
Evangelista, M, Tian, H, de Sauvage, F J. The hedgehog signaling pathway in cancer. Clin Cancer Res 2006; 12 (20 Pt 1): 59245928. doi: 10.1158/1078-0432.CCR-06-1736.CrossRefGoogle ScholarPubMed
Ruiz i Altaba, A, Stecca, B, Sánchez, P. Hedgehog–Gli signaling in brain tumors: stem cells and para-developmental programs in cancer. Cancer Lett 2004; 204 (2): 145157. doi: 10.1016/S0304-3835(03)00451-8.CrossRefGoogle ScholarPubMed
Shahi, M H, Rey, J A, Castresana, JS The sonic hedgehog-GLI1 signaling pathway in brain tumor development. Exp Opin Ther Targets 2012; 16 (12), 12271238. doi: 10.1517/14728222.2012.720975.CrossRefGoogle ScholarPubMed
Sasai, K, Romer, J T, Lee, Y et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res 2006; 66 (8): 42154222.CrossRefGoogle ScholarPubMed
Dahmane, N, Sánchez, P, Gitton, Y et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128 (24): 52015212.Google ScholarPubMed
Robinson, G W, Orr, B A, Wu, G et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol Official J American Soc Clin Oncol 2015; 33 (24); 26462654. doi: 10.1200/JCO.2014.60.1591.CrossRefGoogle ScholarPubMed
Maraka, S, Janku, F. BRAF alterations in primary brain tumors. Discov Med 2018; 26 (141): 5160.Google ScholarPubMed
Cheng, L, Lopez-Beltran, A, Massari, F et al. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol 2018; 31 (1): 2438. doi: 10.1038/modpathol.2017.104.CrossRefGoogle ScholarPubMed
Schreck, K C, Guajardo, A, Lin, D D et al. Concurrent BRAF/MEK inhibitors in BRAF V600–mutant high-grade primary brain tumors. J Natl ComprCancer Netw 2018; 16 (4): 343347.CrossRefGoogle ScholarPubMed
Del Bufalo, F, Ceglie, G, Cacchione, A et al. BRAF V600E inhibitor (Vemurafenib) for BRAF V600E mutated low grade gliomas. Front Oncol 2018; 8: 526.CrossRefGoogle ScholarPubMed
Hawkins, C, Walker, E, Mohamed, N et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 2011; 17 (4): 47904798.CrossRefGoogle ScholarPubMed
Basile Carballo, G, Ribeiro Honorato, J, Farias de Lopes, G P et al. A highlight on Sonic hedgehog pathway. Cell Commun Signal 2018; 16: 11.CrossRefGoogle Scholar
Huang, S Y, Yang, J Y. Targeting the hedgehog pathway in pediatric medulloblastoma. Cancers 2015; 7 (4): 21102123. doi: 10.3390/cancers7040880.CrossRefGoogle ScholarPubMed
Gruber, W, Hutzinger, M, Elmer, D P et al. DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance. Oncotarget 2016; 7 (6): 71347148. doi: 10.18632/oncotarget.6910.CrossRefGoogle ScholarPubMed
Malatesta, M, Steinhauer, C, Mohammad, F et al. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res 2013; 73 (20): 63236333. doi: 10.1158/0008-5472.CAN-12-4660.CrossRefGoogle ScholarPubMed
Shih, D J, Northcott, P A, Remke, M et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 2014; 32 (9): 886896. doi: 10.1200/JCO.2013.50.9539.CrossRefGoogle ScholarPubMed
Zhang, Z, Zheng, X, Luan, Y et al. Activity of metabotropic glutamate receptor 4 suppresses proliferation and promotes apoptosis with inhibition of Gli-1 in human glioblastoma cells. Front Neurosci 2018; 12: 320. doi: 10.3389/fnins.2018.00320.CrossRefGoogle ScholarPubMed
Yapijakis, C, Adamopoulou, M, Tasiouka, K et al. Mutation screening of her-2, N-ras and Nf1 genes in brain tumor biopsies. Anticancer Res 2016; 36 (9): 46074611.CrossRefGoogle ScholarPubMed
Kodaz, H, Kostek, O, Hacioglu, M B et al. Frequency of RAS mutations (KRAS, NRAS, HRAS) in human solid cancer. Breast Cancer 2017; 7 (12): 17.Google Scholar
Shih, F, Yip, S, McDonald, P J et al. Oncogenic codon 13 NRAS mutation in a primary mesenchymal brain neoplasm and nevus of a child with neurocutaneous melanosis. Acta Neuropathologica Commun 2014; 2 (1): 140.CrossRefGoogle Scholar
Fang, P, Boehling, N S, Koay, E J et al. Melanoma brain metastases harboring BRAF V600K or NRAS mutations are associated with an increased local failure rate following conventional therapy. J Neuro-Oncology 2018; 137 (1): 6775.CrossRefGoogle ScholarPubMed
Jakob, J A, Bassett, R L, Ng, C S et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012; 118 (16): 40144023.CrossRefGoogle ScholarPubMed
Zeng, J, See, A P, Phallen, J et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J RadiatOncol Biol Phys 2013; 86 (2): 343349.CrossRefGoogle ScholarPubMed
Wilmotte, R, Burkhardt, K, Kindler, V et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport 2005; 16 (10): 10811085.CrossRefGoogle ScholarPubMed
Wang, X, Teng, F, Kong, L et al. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 2016; 9: 50235039.Google ScholarPubMed
Xue, S, Hu, M, Iyer, V et al. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 2017; 10 (1): 81.CrossRefGoogle ScholarPubMed
Jacobs, J F, Idema, A J, Bol, K F et al. Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro-Oncology 2009; 11 (4): 394402.CrossRefGoogle ScholarPubMed
Yao, Y, Tao, R, Wang, X et al. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro-Oncology 2009; 11 (6): 757766.CrossRefGoogle Scholar
Liu, Y, Carlsson, R, Ambjørn, M et al. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci 2013; 33 (35): 1423114245.CrossRefGoogle ScholarPubMed
Zuccarini, M, Giuliani, P, Ziberi, S et al. The role of WNT signal in glioblastoma development and progression: a possible new pharmacological target for the therapy of this tumor. Genes 2018; 9 (2): 105.CrossRefGoogle ScholarPubMed
McCord, M, Mukouyama, Y S, Gilbert, M R et al. Targeting WNT signaling for multifaceted glioblastoma therapy. Front Cell Neurosci 2017; 11: 318.CrossRefGoogle ScholarPubMed
Denysenko, T, Annovazzi, L, Cassoni, P et al. WNT/β-catenin signaling pathway and downstream modulators in low-and high-grade glioma. Cancer Genomics-Proteomics 2016; 13 (1): 3145.Google ScholarPubMed
Götze, S, Wolter, M, Reifenberger, G et al. Frequent promoter hypermethylation of WNT pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 2010; 126 (11): 25842593.Google ScholarPubMed
Pu, P, Zhang, Z, Kang, C et al. Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 2009; 16 (4): 351361.CrossRefGoogle ScholarPubMed
Maris, C, D’Haene, N, Trépant, A L et al. IGF-IR: a new prognostic biomarker for human glioblastoma. British J Cancer 2015; 113 (5): 729737.CrossRefGoogle ScholarPubMed
Simpson, A, Petnga, W, Macaulay, V M et al. Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol 2017; 12 (5): 571597. doi: 10.1007/s11523-017-0514-5.CrossRefGoogle ScholarPubMed
Sachdev, D, Yee, D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 2007; 6: 112.CrossRefGoogle ScholarPubMed
Yin, S, Girnita, A, Strömberg, T et al. Targeting the insulin-like growth factor-1 receptor by picropodophyllin as a treatment option for glioblastoma. Neuro-Oncology 2009; 12 (1): 1927.CrossRefGoogle ScholarPubMed
Zamykal, M, Martens, T, Matschke, J et al. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-Oncology 2014; 17 (8): 10761085.CrossRefGoogle ScholarPubMed
Paul, I, Bhattacharya, S, Chatterjee, A et al. Current understanding on EGFR and Wnt/β-catenin signaling in glioma and their possible crosstalk. Genes Cancer 2013; 4 (11–12): 427446.CrossRefGoogle ScholarPubMed
Xu, H, Zong, H, Ma, C et al. Epidermal growth factor receptor in glioblastoma. Oncol Lett 2017; 14 (1): 512516. doi: 10.3892/ol.2017.6221.CrossRefGoogle ScholarPubMed
Andersson, U, Schwartzbaum, J, Wiklund, F et al. A comprehensive study of the association between EGFR and ERBB2 genes and glioma risk. Acta Oncologica 2010; 49 (6): 767775.CrossRefGoogle ScholarPubMed
Jaros, E, Perry, R H, Adam, L. et al. Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumours. British J Cancer 1992; 66 (2): 373385.CrossRefGoogle ScholarPubMed
Golding, S E, Morgan, R N, Adams, B R et al. Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 2009; 8 (8): 730738.CrossRefGoogle ScholarPubMed
Wu, G, Yang, W, Barth, R F et al. Molecular targeting and treatment of an epidermal growth factor receptor–positive glioma using boronated cetuximab. Clin Cancer Res 2007; 13 (4): 12601268.CrossRefGoogle ScholarPubMed
Jansen, M, Yip, S, Louis, D N. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol US Natl Libr Med 2010; 9 (7): 717726.CrossRefGoogle ScholarPubMed
The National Center for Biotechnology Information (US). Chromosome Map. Genes and Disease [Internet]. U.S. National Library of Medicine, 1998: 3753. Bethesda, MD. https://www.ncbi.nlm.nih.gov/books/NBK22266/.Google Scholar
Chaturbedi, A, Yu, L, Linskey, M E et al. Detection of 1p19q deletion by real-time comparative quantitative PCR. Biomarker Insights 2012; 7: 917.CrossRefGoogle ScholarPubMed
Zhao, J, Ma, W, Zhao, H. Loss of heterozygosity 1p/19q and survival in glioma: a meta-analysis. Neuro-Oncol 2013; 16 (1): 103112.CrossRefGoogle ScholarPubMed
Cairncross, G, Wang, M, Shaw, E et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 2013; 31 (3): 337343. doi: 10.1200/JCO.2012.43.2674 CrossRefGoogle ScholarPubMed
Mansouri, A, Hachem, L D, Mansouri, S et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro Oncol 2019; 21 (2): 167178. doi: 10.1093/neuonc/noy132.CrossRefGoogle ScholarPubMed
Bady, P, Delorenzi, M, Hegi, M E. Sensitivity analysis of the MGMT-STP27 model and impact of genetic and epigenetic context to predict the MGMT methylation status in gliomas and other tumors. J Mol Diagn 2016; 18 (3): 350361. doi: 10.1016/j.jmoldx.2015.11.009. Epub 2016 Feb 27.CrossRefGoogle ScholarPubMed
Brandes, A A, Franceschi, E, Paccapelo, A et al. Role of MGMT methylation status at time of diagnosis and recurrence for patients with glioblastoma: clinical implications. Oncologist 2017; 22 (4): 432437.CrossRefGoogle ScholarPubMed
Esteller, M, Garcia-Foncillas, J, Andion, E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New England J Med 2000; 343 (19): 13501354.CrossRefGoogle ScholarPubMed
Rivera, A L, Pelloski, C E, Gilbert, M R et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma [published correction appears in Neuro Oncol. 2010; 12 (6): 617]. Neuro Oncol 2010; 12 (2): 116 pathway activity is down-regulated 121. doi: 10.1093/neuonc/nop020 CrossRefGoogle ScholarPubMed
Hegi, M E, Diserens, A C, Gorlia, T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New England J Med 2005; 352 (10): 9971003.CrossRefGoogle ScholarPubMed
Stupp, R, Mason, W P, Van Den Bent, M J et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England J Med 2005; 352 (10): 987996.CrossRefGoogle ScholarPubMed
Gilbert, M R, Wang, M, Aldape, K D et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clinical Oncol 2013; 31 (32): 40854091.CrossRefGoogle ScholarPubMed
Hughesman, C B, Lu, X D, Liu, K Y et al. A robust protocol for using multiplexed droplet digital PCR to quantify somatic copy number alterations in clinical tissue specimens. PloS One 2016; 11 (8): 676.CrossRefGoogle ScholarPubMed
Lombardi, M Y, Assem, M. Glioblastoma genomics: a very complicated story. In: Glioblastoma [Internet] 27th September 2017. Codon Publications. https://www.ncbi.nlm.nih.gov/books/NBK470004/. Accessed on 20th November 2019.Google Scholar
Nawaz, Z, Patil, V, Thinagararjan, S et al. Impact of somatic copy number alterations on the glioblastoma mi RN ome: miR‐4484 is a genomically deleted tumour suppressor. Molecular Oncol 2017; 11 (8):927944.CrossRefGoogle Scholar
Cimino, P J, McFerrin, L, Wirsching, H G et al. Copy number profiling across glioblastoma populations has implications for clinical trial design. Neuro-Oncology 2018; 20 (10): 13681373.CrossRefGoogle ScholarPubMed
Seifert, M, Friedrich, B, Beyer, A. Importance of rare gene copy number alterations for personalized tumor characterization and survival analysis. Genome Biol 2016; 17 (1): 204.CrossRefGoogle ScholarPubMed
Cimino, P J, Zager, M, McFerrin, L et al. Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathol Commun 2017; 5 (1): 39. doi: 10.1186/s40478-017-0443-7.CrossRefGoogle ScholarPubMed