Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-dnb4q Total loading time: 0.477 Render date: 2022-07-06T11:34:38.573Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Abstract classes with few models have ‘homogeneous-universal’ models

Published online by Cambridge University Press:  12 March 2014

J. Baldwin
Affiliation:
Department of Mathematics, University of Illinois, Chicago, Box 4348, Chicago IL 60680
S. Shelah
Affiliation:
Department of Mathematics, Hebrew University of Jerusalem, Jesusalem, Israel

Extract

This paper is concerned with a class K of models and an abstract notion of submodel ≤. Experience in first order model theory has shown the desirability of finding a ‘monster model’ to serve as a universal domain for K. In the original constructions of Jónsson and Fraïssé, K was a universal class and ordinary substructure played the role of ≤. Working with a cardinal λ satisfying λ<λ = λ guarantees appropriate downward Löwenheim-Skolem theorems; the existence and uniqueness of a homogeneous-universal model appears to depend centrally on the amalgamation property. We make this apparent dependence more precise in this paper.

The major innovation of this paper is the introduction of a weaker notion (chain homogeneous-universal) to replace the natural notion of (K, <)-homogeneous-universal model. Modulo a weak extension of ZFC (provable if V = L), we show (Corollary 5.24) that a class K obeying certain minimal restrictions satisfies a fundamental dichotomy. For arbitrarily large λ, either K has the maximal number of models in power λ or K has a unique chain homogeneous-universal model of power λ. We show (5.25) in a class with amalgamation this dichotomy holds for the notion of K-homogeneous-universal model in the more normal sense.

The methods here allow us to improve our earlier results [5] in two other ways: certain requirements on all chains of a given length are replaced by requiring winning strategies in certain games; the notion of a canonically prime model is avoided. A full understanding of these extensions requires consideration of the earlier papers but we summarize them quickly here.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Karlowicz, M.Engelking, A., Some theorems of set theory and their topological consequences, Fundamenta Mathematica, vol. 57 (1965), pp. 275285.Google Scholar
[2]Albert, M. and Grossberg, R., Rich models, this Journal, vol. 55 (1990), pp. 12921298.Google Scholar
[3]Avraham, U., Shelah, S., and Solovay, R., Squares with diamonds and Souslin trees with special squares, Fundamenta Mathematica, vol. 127 (1987), pp. 133162.CrossRefGoogle Scholar
[4]Baldwin, J.T. and Shelah, S., The primal framework: I, Annals of Pure and Applied Logic, vol. 46 (1990), pp. 235264.CrossRefGoogle Scholar
[5]Baldwin, J.T. and Shelah, S., The primal framework II: Smoothness, Annals of Pure and Applied Logic, vol. 55 (1991), pp. 134.CrossRefGoogle Scholar
[6]Beller, A. and Litman, A., A strengthening of Jensen's □ principles, this Journal, vol. 45 (1980), pp. 251264.Google Scholar
[7]Makowsky, J. A., Abstract embedding relations, Model-theoretic logics (Barwise, J. and Feferman, S., editors), Springer-Verlag, 1985, pp. 747792.Google Scholar
[8]Shelah, S., Reflection of stationary sets and successor of singulars, preprint 351: to appear in Archive for mathematical logic.Google Scholar
[9]Shelah, S., On the number of nonisomorphic models of cardinality λ Lλ-equivalent to a fixed model, Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 510.CrossRefGoogle Scholar
[10]Shelah, S., Models with second order properties IV, A general method and eliminating diamonds, Annals of Mathematical Logic, vol. 38 (1983), pp. 183212.Google Scholar
[11]Shelah, S., Remarks on squares, Around classification theory of models, Springer-Verlag, 1986, Springer Lecture Notes 1182.CrossRefGoogle Scholar
[12]Shelah, S., Nonelementary classes II, Classification theory, Chicago 1985 (Baldwin, J., editor), Springer-Verlag, 1987, Springer Lecture Notes 1292.Google Scholar
[13]Shelah, S., Universal classes: Part 1, Classification theory, Chicago 1985 (Baldwin, J., editor), Springer-Verlag, 1987, Springer Lecture Notes 1292, pp. 264419.Google Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Abstract classes with few models have ‘homogeneous-universal’ models
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Abstract classes with few models have ‘homogeneous-universal’ models
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Abstract classes with few models have ‘homogeneous-universal’ models
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *