Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.36 Render date: 2021-03-07T10:15:34.849Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Additivity properties of topological diagonalizations

Published online by Cambridge University Press:  12 March 2014

Tomek Bartoszynski
Affiliation:
Department of Mathematics, Boise State University, Boise, Idaho 83725, USA, E-mail: tomek@math.boisestate.edu, URL: http://math.boisestate.edu/~tomek
Saharon Shelah
Affiliation:
Mathematics Department, Rutgers University, New Brunswick, NJ 08903, USA, E-mail: shelah@math.huji.ac.il, URL: http://math.rutgers.edu/~shelah
Boaz Tsaban
Affiliation:
Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, E-mail: tsaban@macs.biu.ac.il, URL: http://www.cs.biu.ac.il/~tsaban

Abstract

We answer a question of Just, Miller, Scheepers and Szeptycki whether certain diagonalization properties for sequences of open covers are provably closed under taking finite or countable unions.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Bartoszynski, I., Shelah, S., and Tsaban, B., Additivity properties of topological diagonalizations, (full version). Available at http://arxiv.org/abs/math.LO/0112262.Google Scholar
[2] Blass, A. R., Near coherence of filters I: Cofinal equivalence of models of arithmetic, Notre Dame Journal of Formal Logic, vol. 27 (1986), pp. 579591.CrossRefGoogle Scholar
[3] Blass, A. R., Near coherence of filters III: A simplified consistency proof, Notre Dame Journal of Formal Logic, vol. 30 (1989), no. 4, pp. 530538.CrossRefGoogle Scholar
[4] Blass, A. R., Nearly adequate sets. Logic and algebra (Zhang, Y., editor), Contemporary Mathematics, vol. 302, 2002, pp. 3348.CrossRefGoogle Scholar
[5] Galvin, F. and Miller, A. W., γ-sets and other singular sets of reals, Topology and its Applications, vol. 17 (1984), pp. 145155.CrossRefGoogle Scholar
[6] Hurewicz, W., Über folgen stetiger funktionen. Fundamenta Mathematicae, vol. 9 (1927), pp. 193204.CrossRefGoogle Scholar
[7] Just, W., Miller, A. W., Scheepers, M., and Szeptycki, P. J., The combinatorics of open covers II, Topology and its Applications, vol. 73 (1996), pp. 241266.CrossRefGoogle Scholar
[8] Recław, I., Every Luzin set is undetermined in the point-open game, Fundamenta Mathematicae, vol. 144 (1994), pp. 4354.CrossRefGoogle Scholar
[9] Scheepers, M., The length of some diagonalization games, Archive for Mathematical Logic, vol. 38 (1999), pp. 103122.CrossRefGoogle Scholar
[10] Scheepers, M., Sequential convergence in Cp(X) and a covering property, East-West Journal of Mathematics, vol. 1 (1999), pp. 207214.Google Scholar
[11] Scheepers, M. and Tsaban, B., The combinatorics of Borel covers, Topology and its Applications, vol. 121 (2002), pp. 357382.CrossRefGoogle Scholar
[12] Tsaban, B., A diagonalization property between Hurewicz and Menger, Real Analysis Exchange, vol. 27 (2001/2002), pp. 757763.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Additivity properties of topological diagonalizations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Additivity properties of topological diagonalizations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Additivity properties of topological diagonalizations
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *