Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-7x8lp Total loading time: 0.276 Render date: 2021-03-01T05:14:59.984Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Cardinal preserving ideals

Published online by Cambridge University Press:  12 March 2014

Moti Gitik
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Saharon Shelah
Affiliation:
Department of Mathematics, Hebrew University of Jerusalem, Jerusalem. Israel, E-mail: shelah@math.huji.ac.il
Corresponding
E-mail address:

Abstract

We give some general criteria, when κ-complete forcing preserves largeness properties—like κ-presaturation of normal ideals on λ (even when they concentrate on small cofinalities). Then we quite accurately obtain the consistency strength “NSλ is αi-preserving”, for λ > α2.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Avraham, U., Isomorphism of Aronszajn trees, Ph.D. thesis, Jerusalem, 1979.Google Scholar
[2]Baumgartner, J., Independence results in set theory, Notices of the American Mathematical Society, vol. 25 (1978), pp. A 248249.Google Scholar
[3]Baumgartner, J. and Taylor, A., Ideals in generic extensions, II, Transactions of the American Mathematical Society, vol. 271 (1982), pp. 587609.Google Scholar
[4]Galvin, F., Jech, T., and Magidor, M., An ideal game, this Journal, vol. 43 (1978), pp. 284292.Google Scholar
[5]Gitik, M., The nonstationary ideal on α2, Israel Journal of Mathematics, vol. 48 (1984), pp. 257288.CrossRefGoogle Scholar
[6]Gitik, M., Changing cofinalities and the nonstationary ideal, Israel Journal of Mathematics, vol. 56 (1986), pp. 280314.CrossRefGoogle Scholar
[7]Gitik, M., ¬SCH from O(κ) = κ++, Annals of Pure and Applied Logic, vol. 43 (1989), pp. 209234.CrossRefGoogle Scholar
[8]Gitik, M., On generic elementary embeddings, this Journal, vol. 54 (1989), no. 3, pp. 700707.Google Scholar
[9]Gitik, M., Some results on the nonstationary ideal, Israel Journal of Mathematics, vol. 92 (1995), pp. 61112.CrossRefGoogle Scholar
[10]Gitik, M., Some results on the nonstationary ideal II, Israel Journal of Mathematics, vol. 99 (1997), pp. 175188.CrossRefGoogle Scholar
[11]Gitik, M., On clubs consisting of former regulars, this Journal, vol. 64 (1999), pp. 112.Google Scholar
[12]Harrington, L. and Shelah, S., Equiconsistency results in set theory, Notre Dame Journal of Formal Logic, vol. 26 (1985), no. 2, pp. 178188.CrossRefGoogle Scholar
[13]Jech, T., Magidor, M., Mitchell, W., and Prikry, K., Precipitous ideals, this Journal, vol. 45 (1980), pp. 18.Google Scholar
[14]Mitchell, W., The core model for sequence of measures II, preprint.Google Scholar
[15]Mitchell, W., The core model for sequences of measures I, Mathematical Proceedings of the Cambridge Philisophical Society, vol. 95 (1984), pp. 229260.CrossRefGoogle Scholar
[16]Mitchell, W., Indiscernibles, skies and ideals, Contemporary Mathematics, vol. 31 (1984), pp. 161182.CrossRefGoogle Scholar
[17]Shelah, S., Proper forcing, Lecture Notes in Mathematics, no. 940, Springer-Verlag, 1982.CrossRefGoogle Scholar
[18]Shelah, S., Some notes on iterated forcing with 2α0 > α2, Notre Dame Journal of Formal Logic, vol. 29 (1988), pp. 117.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cardinal preserving ideals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Cardinal preserving ideals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Cardinal preserving ideals
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *