Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-gctlb Total loading time: 0.302 Render date: 2022-07-05T00:43:26.508Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Categorical quasivarieties via Morita equivalence

Published online by Cambridge University Press:  12 March 2014

Keith A. Kearnes*
Affiliation:
Department of Mathematics, University of Louisville, Louisville, KY 40292, USA, E-mail: kearnes@louisville.edu

Abstract

We give a new proof of the classification of ℵ0-categorical quasivarieties by using Morita equivalence to reduce to term minimal quasivarieties.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baldwin, J. T. and Lachlan, A. H., On universal Horn classes categorical in some infinite power, Algebra Universalis, vol. 3 (1973), pp. 98111.CrossRefGoogle Scholar
[2]Baldwin, J. T. and McKenzie, R., Counting models in universal Horn classes, Algebra Universalis, vol. 15 (1982), pp. 359384.CrossRefGoogle Scholar
[3]Givant, S., Universal Horn classes categorical or free in power, Annals of Mathematical Logic, vol. 15 (1978), pp. 153.CrossRefGoogle Scholar
[4]Givant, S., A representation theorem for universal Horn classes categorical in power, Annals of Mathematical Logic, vol. 17 (1979), pp. 91116.CrossRefGoogle Scholar
[5]Hobby, D. and McKenzie, R., The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, 1988.CrossRefGoogle Scholar
[6]Hodges, W., Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, 1993.CrossRefGoogle Scholar
[7]Kearnes, K. A., Idempotent simple algebras, Logic and algebra, proceedings of the Magari memorial conference, Siena 1994, Marcel Dekker, New York.Google Scholar
[8]Kearnes, K. A., Local methods in universal algebra, preprint, 1996.Google Scholar
[9]Kearnes, K. A. and Szendrei, Á., A characterization of minimal locally finite varieties, Transactions of the American Mathematical Society, vol. 349 (1997), pp. 17491768.CrossRefGoogle Scholar
[10]Kiss, E. W., An easy way to minimal algebras, International Journal Algebra Comput., vol. 7 (1997), pp. 5575.CrossRefGoogle Scholar
[11]McKenzie, R., Categorical quasivarieties revisited, Algebra Universalis, vol. 19 (1984), pp. 273303.CrossRefGoogle Scholar
[12]McKenzie, R., An algebraic version of categorical equivalence for varieties and more general algebraic categories, Logic and algebra (Pontignano, 1994), Lecture Notes in Pure and Applied Mathematics, vol. 180, Marcel Dekker, New York, 1996, pp. 211243.Google Scholar
[13]Pálfy, P. P., Unary polynomials in algebras, I, Algebra Universalis, vol. 18 (1984), pp. 262273.CrossRefGoogle Scholar
[14]Pálfy, P. P. and Szendrei, Á., Unary polynomials in algebras, II, Contributions to general algebra, Verlag Hölder-Pichler-Tempsky, Wien, Verlag Teubner, Stuttgart, 1983, pp. 273290.Google Scholar
[15]Palyutin, E. A., Categorical quasivarieties of arbitrary signature, Siberian Mathematical Journal, vol. 14 (1974), pp. 904916, Russian original in Siberian Mathematical Journal, vol. 14 (1973), pp. 1285–1303.CrossRefGoogle Scholar
[16]Palyutin, E. A., The description of categorical quasivarieties, Algebra and Logic, vol. 14 (1976), pp. 86111, Russian original in Algebra i Logika, 14 (1975), pp. 263–303.CrossRefGoogle Scholar
[17]Szendrei, Á., >Clones in universal algebra, Séminaire de Mathétiques Superieures, vol. 99, Les Presses de l'Université de Montréal, Montréal, 1986.Google Scholar
[18]Szendrei, Á., Idempotent algebras with restrictions on subalgebras, Acta Sci Math., vol. 51 (1987), pp. 251268.Google Scholar
[19]Szendrei, Á., Simple surjective algebras having no proper subalgebras, Journal of the Australian Mathematical Society, vol. 48 (1990), pp. 434454.CrossRefGoogle Scholar
[20]Szendrei, Á., Term minimal algebras, Algebra Universalis, vol. 32 (1994), pp. 439477.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Categorical quasivarieties via Morita equivalence
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Categorical quasivarieties via Morita equivalence
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Categorical quasivarieties via Morita equivalence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *