Skip to main content Accessibility help
Home
Hostname: page-component-55597f9d44-vkn6t Total loading time: 0.378 Render date: 2022-08-12T21:16:15.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

# The complexity of ODDnA

Published online by Cambridge University Press:  12 March 2014

## Abstract

For a fixed set A. the number of queries to A needed in order to decide a set S is a measure of S's complexity. We consider the complexity of certain sets defined in terms of A:

and, for m > 2,

where #nA. (x1….. xn) = A(x1) + A(xn)(We identify with , where χA is the characteristic function of A.)

If A is a nonrecursive semirecursive set or if A is a jump, we give tight bounds on the number of queries needed in order to decide ODDnA and MODmnA:

• ODDnA can be decided with n parallel queries to A, but not with n − 1.

• ODDnA can be decided with ⌈log(n + 1)⌉ sequential queries to A but not with ⌈log(n + 1)⌉ − 1.

• MODmnA can be decided with ⌈n/m⌉ + ⌊n/m⌋ parallel queries to A but not with ⌈n/m⌉ + ⌊n/m⌋ − 1.

• MODmnA can be decided with ⌈log(⌈n/m⌉ + ⌊n/m⌋ + 1)⌉ sequential queries to A but not with ⌈log(⌈n/m⌉ + ⌊n/m⌋ + 1)⌉ − 1.

The lower bounds above hold for nonrecursive recursively enumerable sets A as well. (Interestingly, the lower bounds for recursively enumerable sets follow by a general result from the lower bounds for semirecursive sets.)

In particular, every nonzero truth-table degree contains a set A such that ODDnA cannot be decided with n − 1 parallel queries to A. Since every truth-table degree also contains a set B such that ODDnB can be decided with one query to B, a set's query complexity depends more on its structure than on its degree.

For a fixed set A,

Q(n, A) = {S: S can be decided with n sequential queries to A}.

Q (n, A) = {S : S can be decided with n parallel queries to A}.

We show that if A is semirecursive or recursively enumerable, but is not recursive, then these classes form non-collapsing hierarchies:

• Q(0,A) ⊂ Q (1, A) ⊂ Q(2, A) ⊂ …

Q (0, A) ⊂ Q (1, A) ⊂ Q (2, A) ⊂ …

The same is true if A is a jump.

Type
Research Article
Information
The Journal of Symbolic Logic , March 2000 , pp. 1 - 18
Copyright
Copyright © Association for Symbolic Logic 2000

## Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

## References

[Bei87a]Beigel, Richard, Functionally supportive sets, Technical Report 87-10, The Johns Hopkins University, Department of Computer Science, 1987.Google Scholar
[Bei87b]Beigel, Richard, Query-limited reducibilities, Ph.D. thesis, Stanford University, 1987, Also available as Report No. STAN-CS-88-1221.Google Scholar
[Bei88]Beigel, Richard, When are k + 1 queries better than k?, Technical Report 88-06, The Johns Hopkins University, Department of Computer Science, 1988.Google Scholar
[BGK96a]Beigel, Richard, Gasarch, William, and Kinber, Efim, Frequency computation and bounded queries, Theoretical Computer Science, vol. 163 (1996), pp. 177192.CrossRefGoogle Scholar
[BGK+96b]Beigel, Richard, Gasarch, William, Kummer, Martin, Martin, Georgia, McNicholl, Timothy, and Stephan, Frank, On the query complexity of sets, 21st International Symposium on Mathematical Foundations of Computer Science (MFCS '96), Cracow, Poland, 1996.Google Scholar
[BGG093]Beigel, Richard, Gasarch, William I., Gill, John T., and Owings, James C., Terse, superterse, and verbose sets, Information and Computation, vol. 103(1) (03 1993), pp. 6885.CrossRefGoogle Scholar
[BGH89]Beigel, Richard, Gasarch, William I., and Hay, Louise, Bounded query classes and the difference hierarchy, Archive for Mathematical Logic, vol. 29(2) (12 1989), pp. 6984.CrossRefGoogle Scholar
[BS90]Boppana, Ravi and Sipser, Michael, The complexity of finite functions, Handbook of theoretical computer science, volume A: Algorithms and complexity (van Leeuwen, Jan, editor), MIT Press and Elsevier, The Netherlands, 1990, pp. 757804.Google Scholar
[CH89]Cai, Jin-yi and Hemachandra, Lane A., Enumerative counting is hard, Information and Computation, vol. 82(1) (07 1989), pp. 3444.CrossRefGoogle Scholar
[FSS84]Furst, Merrick, Saxe, James B., and Sipser, Michael, Parity, circuits, and the polynomialtime hierarchy, Mathematical Systems Theory, vol. 17(1) (04 1984), pp. 1327.CrossRefGoogle Scholar
[Gas91]Gasarch, William, Bounded queries in recursion theory: A survey, Proceedings of the 6th Annual Conference on Structure in Complexity Theory, IEEE Computer Society Press, 06 1991, pp. 6278.Google Scholar
[GM99]Gasarch, William I. and Martin, Georgia A., Bounded queries in recursion theory, BirkhÄuser, Boston, 1999.CrossRefGoogle Scholar
[GNW95]Goldreich, Oded, Nisan, Noam, and Wigderson, Avi, On Yao's XOR-lemma, Technical Report TR95-050, Electronic Colloquium on Computational Complexity, 1995.Google Scholar
[Has87]HÅstad, Johan, Computational limitations of small-depth circuits, MIT Press, Cambridge, MA, 1987.Google Scholar
[Hay78]Hay, Louise, Convex subsets of 2n and bounded truth-table reducibility, Discrete Mathematics, vol. 21(1) (01 1978), pp. 3146.CrossRefGoogle Scholar
[Joc89]Jockusch, Carl G., Degrees of functions with no fixed points, Logic, methodology, and philosophy of science VIII (Fenstad, J.E., Frolov, I., Hilpinen, and R., editors), North Holland, 1989, pp. 191201.Google Scholar
[Joc68]Jockusch, Carl G., Semirecursive sets and positive reducibility, Transactions of the American Mathematical Society, vol. 131 (05 1968), pp. 420436.CrossRefGoogle Scholar
[JS72]Jockusch, Carl G. Jr., and Soare, Robert I., Π10 classes and degrees of theories, Transactions of the American Matmematical Society, vol. 173 (1972), pp. 3356.Google Scholar
[Kuc85]Kučera, Antonin, Measure of Π10 classes and complete extensions of PA, Recursion theory week at Oberwolfach, Lecture Notes in Mathematics, vol. 1141, Springer-Verlag, Berlin, 1985, pp. 245259.CrossRefGoogle Scholar
[Kum92]Kummer, Martin, A proof of Beigel's cardinality conjecture, this Journal, vol. 57(2) (06 1992), pp. 677681.Google Scholar
[KS94]Kummer, Martin and Stephan, Frank, Effective search problems, Mathematical Logic Quarterly, vol. 40 (1994), pp. 224236.CrossRefGoogle Scholar
[Lev87]Levin, Leonid A., One way functions and pseudorandom generators, Combinatorica, vol. 7 (1987), pp. 357363.CrossRefGoogle Scholar
[MM68]Miller, Webb and Martin, Donald A., The degree of hyperimmune sets, Zeitschrift fÜr Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 159166.CrossRefGoogle Scholar
[Odi89]Odifreddi, Piergiorgio, Classical recursion theory (Volume I), North-Holland, Amsterdam, 1989.Google Scholar
[Rog67]Rogers, Hartley Jr., Theory of recursive functions and effective computability, McGraw Hill, New York, 1967.Google Scholar
[Smo87]Smolensky, Roman, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, Proceedings of the 19th ACM Symposium on Theory of Computing, 1987, pp. 7782.Google Scholar
[Soa87]Soare, Robert I., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
[Yao85]Yao, Andrew C., Separating the polynomial-time hierarchy by oracles, Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 110.Google Scholar
8
Cited by

# Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The complexity of ODDnA
Available formats
×

# Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The complexity of ODDnA
Available formats
×

# Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The complexity of ODDnA
Available formats
×
×

#### Reply to:Submit a response

Please enter your response.

#### Your details

Please enter a valid email address.

#### Conflicting interests

Do you have any conflicting interests? *