Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.303 Render date: 2021-10-18T18:29:52.339Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

ERNA and Friedman's Reverse Mathematics

Published online by Cambridge University Press:  12 March 2014

Sam Sanders*
Affiliation:
University of Ghent, Department of Mathematics, Krijgslaan 281, B-9000 Gent, Belgium, E-mail: sasander@cage.ugent.be

Abstract

Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA0 from Reverse Mathematics (see [21] and [22]) can be ‘pushed down’ into the weak theory ERNA, while preserving the equivalences, but at the price of replacing equality with equality ‘up to infinitesimals’. It turns out that ERNA plays the role of RCA0 and that transfer for universal formulas corresponds to WKL.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Avigad, Jeremy, Weak theories of nonstandard arithmetic and analysis, Reverse mathematics 2001, Lecture Notes in Logic, vol. 21, Association for Symbolic Logic, La Jolla, CA, 2005, pp. 1946.Google Scholar
[2]Bishop, Errett and Bridges, Douglas S., Constructive analysis, Grundlehren der Mathematischen Wissenschaften, vol. 279, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
[3]Bridges, Douglas S., Constructive functional analysis, Research Notes in Mathematics, vol. 28, Pitman Publishing, London, San Francisco and Melbourne, 1979.Google Scholar
[4]Douglass, S. Bridges and Vîtă, Luminita Simona, Techniques of constructive analysis, Universitext, Springer, 2006.Google Scholar
[5]Buss, Samuel R., An introduction to proof theory, Handbook of proof theory, Studies in Logic and the Foundations of Mathematics, vol. 137, North-Holland, Amsterdam, 1998, pp. 178.CrossRefGoogle Scholar
[6]Chuaqui, Rolando and Suppes, Patrick, Free-variable axiomatic foundations of infinitesimal analysis: A fragment with finitary consistency proof, this Journal, vol. 60 (1995), pp. 122159.Google Scholar
[7]Davidson, Kenneth R. and Donsig, Allan P., Real analysis with real applications, Prentice Hall, Upper Saddle River, NJ, 2002.Google Scholar
[8]Friedman, Harvey, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, BC, 1974), vol. 1, Canadian Mathematics Congress, Montreal, Quebec, 1975, pp. 235242.Google Scholar
[9]Friedman, Harvey, Systems of second order arithmetic with restricted induction, I & II (abstracts), this Journal, vol. 41 (1976), pp. 557559.Google Scholar
[10]Hurd, Albert E. and Loeb, Peter A., An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press Inc., Orlando, FL, 1985.Google Scholar
[11]Impens, Chris and Sanders, Sam, Erna at work, The strength of nonstandard analysis, Springer Wien NewYork Vienna, 2007, pp. 6475.CrossRefGoogle Scholar
[12]Impens, Chris, Transfer and a supremum principle for ERNA, this Journal, vol. 73 (2008), pp. 689710.Google Scholar
[13]Impens, Chris, Saturation and Σ2-transfer for ERNA, this Journal, vol. 74 (2009), pp. 901913.Google Scholar
[14]Ishihara, Hajime, Constructive reverse mathematics: compactness properties, From sets and types to topology and analysis, Oxford Logic Guides, vol. 48, Oxford University Press, Oxford, 2005, pp. 245267.CrossRefGoogle Scholar
[15]Ishihara, Hajime, Reverse mathematics in Bishop's constructive mathematics, Philosophia Scientiae (Cahier Spécial), vol. 6 (2006), pp. 4359.CrossRefGoogle Scholar
[16]Keisler, H. Jerome, Nonstandard arithmetic and reverse mathematics, The Bulletin of Symbolic Logic, vol. 12 (2006), no. 1, pp. 100125.CrossRefGoogle Scholar
[17]Rössler, Michal and Jeřábek, Emil, Fragment of nonstandard analysis with a finitary consistency proof. The Bulletin of Symbolic Logic, vol. 13 (2007), pp. 5470.CrossRefGoogle Scholar
[18]Sakamoto, Nobuyuki and Yokoyama, Keita, The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic. Archive in Mathematical Logic, vol. 46 (2007), no. 5–6, pp. 465480.CrossRefGoogle Scholar
[19]Sanders, Sam, More infinity for a better finitism, Annals of Pure and Applied Logic, vol. 161 (2010), no. 12, pp. 15251540.CrossRefGoogle Scholar
[20]Simpson, Stephen G., Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?, this Journal, vol. 49 (1984), no. 3, pp. 783802.Google Scholar
[21]Simpson, Stephen G. (Editor), Reverse mathematics 2001, Lecture Notes in Logic, vol. 21, Association for Symbolic Logic, La Jolla, CA, 2005.Google Scholar
[22]Simpson, Stephen G., Subsystems of second order arithmetic, 2 ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
[23]Sommer, Richard and Suppes, Patrick, Finite models of elementary recursive nonstandard analysis. Notas de la Sociedad Mathematica de Chile, vol. 15 (1996), pp. 7395.Google Scholar
[24]Sommer, Richard, Dispensing with the continuum, Journal of Mathematical Psychology, vol. 41 (1997), pp. 310.CrossRefGoogle Scholar
[25]Suppes, Patrick and Chuaqui, Rolando, A finitarily consistent free-variable positive fragment of infinitesimal analysis, Proceedings of the IXth Latin American Symposium on Mathematical Logic, Notas de Logica Matematica, vol. 38, 1993, pp. 159.Google Scholar
[26]Yokoyama, Keita, Complex analysis in subsystems of second order arithmetic, Archive for Mathematical Logic, vol. 46 (2007), no. 1, pp. 1535.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ERNA and Friedman's Reverse Mathematics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ERNA and Friedman's Reverse Mathematics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ERNA and Friedman's Reverse Mathematics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *