Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-z4vvc Total loading time: 0.253 Render date: 2021-03-01T03:43:23.499Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Forcing constructions for uncountably chromatic graphs

Published online by Cambridge University Press:  12 March 2014

Péter Komjáth
Affiliation:
Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015 Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 Institute of Mathematics, The Hebrew University, Jerusalem, Israel
Saharon Shelah
Affiliation:
Institute of Mathematics, Eötvös University, Budapest 1088, Hungary Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Extract

In this paper we solve some of Pál Erdős's favorite problems on uncountably chromatic graphs. Generalizing a finite graph theory result of Tutte, Erdős and R. Rado showed that for every infinite cardinal κ there exists a triangle-free, κ-chromatic graph of size κ. For κ = ℵ0, Erdős established the existence of ℵ0-chromatic graphs excluding even C4, C5,…, Cn, i.e. circuits up to a given length. For κ < ℵ0 the situation is different. As shown by Erdős and A. Hajnal, a graph is necessarily countably chromatic if it omits any finite bipartite graph. We can, however, exclude any finite list of nonbipartite graphs (this obviously reduces to excluding finitely many odd circuits). They posed an even stronger conjecture, namely, that similar examples must occur in every uncountably chromatic graph. To be specific, they conjectured that for every infinite κ, every κ-chromatic graph contains a κ-chromatic triangle-free subgraph. Here we show that this may not be true for κ = ℵ1 i.e. we exhibit a model where it is false. We must emphasize that the conjecture is probably false already in ZFC, but we have been unable to show this.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1988

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Erdős, P., Problems and results on finite and infinite combinatorial analysis, Infinite and finite sets (P. Erdős sixtieth birthday colloquium, Keszthely, 1973; Hajnal, A.et al., editors), Colloquia Mathematica Societatis János Bolyai, vol. 10, part 1, North-Holland, Amsterdam, 1975, pp. 403424.Google Scholar
[2]Erdős, P., Problems and results on finite and infinite combinatorial analysis. II, L'Enseignement Mathématique, vol. 27 (1981), pp. 163176.Google Scholar
[3]Erdős, P., On the combinatorial problems I would most like to see solved, Combinatorica, vol. 1 (1981), pp. 2442.CrossRefGoogle Scholar
[4]Erdős, P. and Hajnal, A., Unsolved problems in set theory, Axiomatic set theory, Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, Rhode Island, 1971, pp. 1748.CrossRefGoogle Scholar
[5]Erdős, P. and Hajnal, A., Chromatic number of finite and infinite graphs and hypergraphs, Discrete Mathematics, vol. 53 (1985), pp. 281285.CrossRefGoogle Scholar
[6]Folkman, J., Graphs with monochromatic complete subgraphs in every edge coloring, SIAM Journal of Applied Mathematics, vol. 18 (1970), pp. 115124.CrossRefGoogle Scholar
[7]Hajnal, A., A negative partition relation, Proceedings of the National Academy of Sciences of the United States of America, vol. 68 (1971), pp. 142144.CrossRefGoogle ScholarPubMed
[8]Hajnal, A. and Komjáth, P., What must and what need not be contained in every graph of uncountable chromatic number? Combinatorica, vol. 4 (1984), pp. 4752.CrossRefGoogle Scholar
[9]Hajnal, A. and Máté, A., Set mappings, partitions, and chromatic numbers, Logic Colloquium '73, North-Holland, Amsterdam, 1975, pp. 347379.Google Scholar
[10]Komjáth, P., A note on the Hajnal-Máté graphs, Studia Scientiarum Mathematicarum Hungarica, vol. 15 (1980), pp. 275276.Google Scholar
[11]Komjáth, P., Mekler, A., and Pach, J., Universal graphs (to appear).Google Scholar
[12]Nešetřil, J. and Rödl, V., The Ramsey property for graphs with forbidden subgraphs, Journal of Combinatorial Theory, Series B, vol. 20 (1976), pp. 243249.CrossRefGoogle Scholar
[13]Rödl, V., On the chromatic number of subgraphs of a graph, Proceedings of the American Mathematical Society, vol. 64 (1977), pp. 370371.CrossRefGoogle Scholar
[14]Shelah, S., Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.CrossRefGoogle Scholar
[15]Shelah, S., Can you take Solovay's inaccessible away? Israel Journal of Mathematics, vol. 48 (1984), pp. 147.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Forcing constructions for uncountably chromatic graphs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Forcing constructions for uncountably chromatic graphs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Forcing constructions for uncountably chromatic graphs
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *