Hostname: page-component-5d59c44645-jb2ch Total loading time: 0 Render date: 2024-03-02T05:56:22.612Z Has data issue: false hasContentIssue false

GLIVENKO AND KURODA FOR SIMPLE TYPE THEORY

Published online by Cambridge University Press:  25 June 2014

CHAD E. BROWN
Affiliation:
PROGRAMMING SYSTEMS LAB UNIVERSITÄT DES SAARLANDES CAMPUS E1 3, 66123 SAARBRÜCKEN GERMANYE-mail: cebrown@ps.uni-saarland.de
CHRISTINE RIZKALLAH
Affiliation:
MAX-PLANK INSTITUT FÜR INFORMATIK CAMPUS E1 4, 66123 SAARBRÜCKEN GERMANYE-mail: crizkall@mpi-inf.mpg.de

Abstract

Glivenko’s theorem states that an arbitrary propositional formula is classically provable if and only if its double negation is intuitionistically provable. The result does not extend to full first-order predicate logic, but does extend to first-order predicate logic without the universal quantifier. A recent paper by Zdanowski shows that Glivenko’s theorem also holds for second-order propositional logic without the universal quantifier. We prove that Glivenko’s theorem extends to some versions of simple type theory without the universal quantifier. Moreover, we prove that Kuroda’s negative translation, which is known to embed classical first-order logic into intuitionistic first-order logic, extends to the same versions of simple type theory. We also prove that the Glivenko property fails for simple type theory once a weak form of functional extensionality is included.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, Peter B., Resolution in type theory, this journal, vol. 36 (1971), pp. 414432.Google Scholar
Andrews, Peter B., An introduction to mathematical logic and type theory: To truth through proof, second ed., Kluwer Academic Publishers, Dordrecht, 2002.CrossRefGoogle Scholar
Benzmüller, Christoph, Brown, Chad E., and Kohlhase, Michael, Higher-order semantics and extensionality, this JOURNAL, vol. 69 (2004), pp. 10271088.Google Scholar
Church, Alonzo, A formulation of the simple theory of types, this JOURNAL, vol. 5 (1940),pp. 5668.Google Scholar
Ferreira, Gilda and Oliva, Paulo, On various negative translations, Proceedings Third International Workshop on Classical Logic and Computation, CL&C 2010, Brno, Czech Republic, 21–22 August 2010 (Bakel, Steffen van, Berardi, Stefano, and Berger, Ulrich, editors), EPTCS, vol. 47, 2010, pp. 2133. http://dx.doi.org/10.4204/EPTCS.47Google Scholar
Fitting, Melvin, Intuitionistic logic, model theory and forcing, North-Holland Publishing Co., Amsterdam, 1969.Google Scholar
Gentzen, Gerhard, Über das verhältnis zwischen intuitionistischer und klassischer arithmetik. Archiv für mathematische Logik und Grundlagenforschung, vol. 16 (1974), pp. 119132, received in 1933.Google Scholar
Glivenko, Valery, Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences, vol. 15 (1929), pp. 183188.Google Scholar
Gödel, Kurt, Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 3438.Google Scholar
Kolmogorov, Andrey, O principe tertium non datur. Matematiceskij Sbornik, vol. 32 (1925), pp. 646667. Translated as “On the principle of excluded middle” in Jean van Heijenoort. From Frege to Gödel. A source book in mathematical logic 1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967, pp. 416–437.Google Scholar
Kuroda, Sigekatu, Intuitionistische untersuchgen der formalistischen logik. Nagoya Mathematical Journal, vol. 2 (1951), pp. 3547.CrossRefGoogle Scholar
Lambek, Joachim and Scott, Philip, Introduction to higher order categorical logic, Cambridge University Press, Cambridge, UK, 1986.Google Scholar
Rizkallah, Christine, Proof representations for higher-order logic, Master’s thesis, Universität des Saarlandes, December 2009.Google Scholar
Tatsuta, Makoto, Fujita, Ken-etsu, Hasegawa, Ryu, and Nakano, Hiroshi, Inhabitation of polymorphic and existential types. Annals of Pure and Applied Logic, vol. 161 (2010), no. 11,pp. 13901399.CrossRefGoogle Scholar
Zdanowski, Konrad, On second order intuitionistic propositional logic without a universal quantifier, this JOURNAL, vol. 74 (2009), pp. 157167.Google Scholar