Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-9g8ph Total loading time: 0.252 Render date: 2022-06-29T11:28:14.827Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Independence results

Published online by Cambridge University Press:  12 March 2014

Saharon Shelah*
Affiliation:
Hebrew University, Jerusalem, Israel University of Wisconsin, Madison, Wisconsin 53706 University of California, Berkeley, California 94720

Abstract

We prove independence results concerning the number of nonisomorphic models (using the S-chain condition and S-properness) and the consistency of “ there is a universal linear order of power ℵ1”. Most of these results were announced in [Sh 4], [Sh 5].

In subsequent papers we shall prove an analog f MA for forcing which does not destroy stationary subsets of ω1 investigate -properness for various filters and prove the consistency with G.C.H. of an axiom implying SH (for ℵ1), and connected results.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[B]Baumgartner, J., All ℵ1-dense sets of reals can be isomorphic, Fundamenta mathematicae, vol. 79 (1973), pp. 101106.CrossRefGoogle Scholar
[Sh 1]Shelah, S., Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.Google Scholar
[Sh 2]Shelah, S., Models with second-order properties. III, Omitting types in λ+ for L(Q), Proceedings of the Berlin Workshop, July 1977, Archiv für Mathematische Logik (to appear).Google Scholar
[Sh 3]Shelah, S., It is consistent that /finite has no non-trivial automorphisms (preprint).Google Scholar
[Sh 4]Shelah, S., Whitehead problem, independence of categoricity simple theories and Boolean algebras, Notices of the American Mathematical Society, vol. 25 (1978), A441.Google Scholar
[Sh 5]Shelah, S., Iterated forcing and independence results, Notices of the American Mathematical Society, vol. 25 (1978), A497.Google Scholar
[ST]Solovay, R.M. and Tenenbaum, S., Iterated Cohen extensions and Souslin's problem, Annals of Mathematics, vol. 94 (1971), pp. 201245.CrossRefGoogle Scholar
[W]Wimmers, E., The Shelah P-point independence theorem, Israel Journal of Mathematics (to appear).Google Scholar
29
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Independence results
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Independence results
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Independence results
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *