Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-22T05:19:38.916Z Has data issue: false hasContentIssue false

Intensional interpretations of functionals of finite type I

Published online by Cambridge University Press:  12 March 2014

W. W. Tait*
Stanford University


T0 will denote Gödel's theory T[3] of functionals of finite type (f.t.) with intuitionistic quantification over each f.t. added. T1 will denote T0 together with definition by bar recursion of type o, the axiom schema of bar induction, and the schema

of choice. Precise descriptions of these systems are given below in §4. The main results of this paper are interpretations of T0 in intuitionistic arithmetic U0 and of T1 in intuitionistic analysis is U1. U1 is U0 with quantification over functionals of type (0,0) and the axiom schemata AC00 and of bar induction.

Research Article
Copyright © Association for Symbolic Logic 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Brouwer, L. E. J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 6076.CrossRefGoogle Scholar
[2]Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines math. Koll., Heft. 4 für 19311932 (1933), pp. 3438.Google Scholar
[3]Göodel, K., Über eine bisher noch nicht benützte Erweiterung des finiteti Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.CrossRefGoogle Scholar
[4]Grzegorczyk, A., Recursive objects in all finite types, Fundamenta Mathematicae, vol. 54 (1964), pp. 7393.CrossRefGoogle Scholar
[5]Kleene, S. C., Countable functionals, Constructivity in mathematics, North Holland Publishing Co., Amsterdam, 1959, pp. 81100.Google Scholar
[6]Kleene, S. C., Recursive functionals and quantifiers of finite type I, Transactions of the American Mathematical Society, vol. 91 (1959), pp. 156.Google Scholar
[7]Kreisel, G., Interpretation of classical analysis by means of constructive functionals of finite type, Constructivity in mathematics, North Holland Publishing Co., Amsterdam, 1959, pp. 101128.Google Scholar
[8]Kreisel, G., Inessential extensions of Heyting's arithmetic by means of functionals of finite type, this Journal, vol. 24, no. 3 (1959), p. 284 (Abstract).Google Scholar
[9]Spector, C., Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics, Recursive function theory, Proceedings of symposia in pure mathematics, American Mathematical Society, Providence, R.I., 1962, pp. 127.Google Scholar
[10]Tait, W. W., A second order theory of functionals of higher type (to appear).Google Scholar