Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.325 Render date: 2021-12-02T23:08:45.044Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+

Published online by Cambridge University Press:  12 March 2014

Heike Mildenberger
Affiliation:
Abteilung für Mathematische Logik, Mathematisches Institut, Universität Freiburg, Eckerstr. 1, 79104 Freiburg im Breisgau, Germany, E-mail: heike.mildenberger@math.uni-freiburg.de
Saharon Shelah
Affiliation:
Einstein Institute of Mathematics, The Hebrew University, Edmond Safra Campus Givat Ram, Jerusalem 91904, Israel, E-mail: shelah@math.huji.ac.il

Abstract

We prove the statement in the title.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Banakh, Taras, Repovš, Dušan, and Zdomskyy, Lyubomyr, On the length of chain of proper subgroups covering a topological group, Archive for Mathematical Logic, vol. 50 (2011), no. 3–4, pp. 411421.CrossRefGoogle Scholar
[2] Bartoszyński, Tomek and Judah, Haim, Set theory, on the structure of the real line, A K Peters, 1995.Google Scholar
[3] Baumgartner, James, Almost-disjoint sets, the dense-set problem, and the partition calculus, Annals of Mathematical Logic, vol. 9 (1976), pp. 401439.CrossRefGoogle Scholar
[4] Blass, Andreas and Mildenberger, Heike, On the cofinality of ultrapowers, this Journal, vol. 64 (1999), pp. 727736.Google Scholar
[5] Brendle, Jörg and Losada, Maria, The cofinality of the inifinite symmetric group and groupwise density, this Journal, vol. 68 (2003), no. 4, pp. 13541361.Google Scholar
[6] Canjar, Michael, Cofinalities of countable ultraproducts: The existence theorem, Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 309312.CrossRefGoogle Scholar
[7] Jech, Thomas, Set theory, The Third Millenium, revised and expanded ed., Springer, 2003.Google Scholar
[8] MacPherson, Dugald and Neumann, Peter, Subgroups of the infinite symmetric group, Journal of the London Mathematical Society, vol. 42 (1990), pp. 6484.CrossRefGoogle Scholar
[9] Mildenberger, Heike and Shelah, Saharon, The relative consistency of g < cf(sym(ω)), this Journal, vol. 67 (2002), pp. 297314.Google Scholar
[10] Mildenberger, Heike, The principle of near coherence of filters does not imply the filter dichotomy principle, Transactions of the American Mathematical Society, vol. 361 (2009), pp. 23052317, [MdSh:894].CrossRefGoogle Scholar
[11] Mildenberger, Heike, Shelah, Saharon, and Tsaban, Boaz, Covering the Baire space with meager sets, Annals of Pure and Applied Logic, vol. 140 (2006), pp. 6071.CrossRefGoogle Scholar
[12] Sharp, James D. and Thomas, Simon, Unbounded families and the cofinality of the infinite symmetric group, Archive for Mathematical Logic, vol. 34 (1995), pp. 3345.CrossRefGoogle Scholar
[13] Shelah, Saharon, Groupwise density cannot be much bigger than the unbounded number, Mathematical Logic Quarterly, vol. 54 (2008), pp. 340344.CrossRefGoogle Scholar
[14] Shelah, Saharon and Tsaban, Boaz, Critical cardinalities and additivity properties of combinatorial notions of smallness, Journal of Applied Analysis, vol. 9 (2003), pp. 149162.CrossRefGoogle Scholar
[15] Thomas, Simon, Groupwise density and the cofinality of the infinite symmetric group, Archive for Mathematical Logic, vol. 37 (1998), pp. 483493.CrossRefGoogle Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *