Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.233 Render date: 2021-02-25T05:48:09.719Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

More on entangled orders

Published online by Cambridge University Press:  12 March 2014

Ofer Shafir
Affiliation:
Hebrew University, Jerusalem 91904, Israel Institute of Mathematics, The Hebrew University, Jerusalem, Israel
Saharon Shelah
Affiliation:
Rutgers University, Department of Mathematics, New Brunswick, NJ, USA, E-mail:shelah@math.huji.ac.il
Corresponding
E-mail address:

Extract

This paper grew as a continuation of [Sh462] but in the present form it can serve as a motivation for it as well. We deal with the same notions, all defined in 1.1, and use just one simple lemma from there whose statement and proof we repeat as 2.1. Originally entangledness was introduced, in [BoSh210] for example, in order to get narrow boolean algebras and examples of the nonmultiplicativity of c.c-ness. These applications became marginal when other methods were found and successfully applied (especially Todorčevic walks) but after the pcf constructions which made their début in [Sh-g] and were continued in [Sh462] it seems that this notion gained independence.

Generally we aim at characterizing the existence of strong and weak entangled orders in cardinal arithmetic terms. In [Sh462, §6] necessary conditions were shown for strong entangledness which in a previous version was erroneously proved to be equivalent to plain entangledness. In §1 we give a forcing counterexample to this equivalence and in §2 we get those results for entangledness (certainly the most interesting case). A new construction of an entangled order ends this section. In §3 we get weaker results for positively entangledness, especially when supplemented with the existence of a separating point (Definition 2.2). An antipodal case is defined in 3.10 and completely characterized in 3.11. Lastly we outline in 3.12 a forcing example showing that these two subcases of positive entangledness comprise no dichotomy. The work was done during the fall of 1994 and the winter of 1995. The second author proved Theorems 1.2, 2.14, the result that is mentioned in Remark 2.11 and what appears in this version as Theorem 2.10(a) with the further assumption den (I)θ < μ. The first author is responsible for waving off this assumption (actually by showing that it holds in the general case), for Theorems 2.12 and 2.13 in Section 2 and for the work which is presented in Section 3.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

[BoSh210]Bonnet, R. and Shelah, S., Narrow Boolean algebras, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 112.CrossRefGoogle Scholar
[Sh410]Shelah, S., More on cardinal arithmetic, Archive for Mathematical Logic, vol. 32 (1993), pp. 399428.CrossRefGoogle Scholar
[Sh460]Shelah, S., The generalized continuum hypothesis revisited, Israel Journal of Mathematics.Google Scholar
[Sh462]Shelah, S., σ-entangled linear orders and narrowness of products of Boolean algebras, Fundamenta Mathematicae.Google Scholar
[Sh-g]Shelah, S., Cardinal arithmetic, Oxford University Press, 1994.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

More on entangled orders
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

More on entangled orders
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

More on entangled orders
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *