Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-27T09:34:16.540Z Has data issue: false hasContentIssue false

PARTIALLY-ELEMENTARY END EXTENSIONS OF COUNTABLE MODELS OF SET THEORY

Published online by Cambridge University Press:  27 August 2025

ZACHIRI MCKENZIE*
Affiliation:
DEPARTMENT OF MATHEMATICS UNIVERSITY OF CHESTER CHESTER CH1 4BJ UNITED KINGDOM

Abstract

Let $\mathsf {KP}$ denote Kripke–Platek Set Theory and let $\mathsf {M}$ be the weak set theory obtained from $\mathsf {ZF}$ by removing the collection scheme, restricting separation to $\Delta _0$-formulae and adding an axiom asserting that every set is contained in a transitive set ($\mathsf {TCo}$). A result due to Kaufmann [9] shows that every countable model, $\mathcal {M}$, of $\mathsf {KP}+\Pi _n\textsf {-Collection}$ has a proper $\Sigma _{n+1}$-elementary end extension. We show that for all $n \geq 1$, there exists an $L_\alpha $ (where $L_\alpha $ is the $\alpha ^{\textrm {th}}$ approximation of the constructible universe L) that satisfies $\textsf {Separation}$, $\textsf {Powerset}$ and $\Pi _n\textsf {-Collection}$, but that has no $\Sigma _{n+1}$-elementary end extension satisfying either $\Pi _n\textsf {-Collection}$ or $\Pi _{n+3}\textsf {-Foundation}$. Thus showing that there are limits to the amount of the theory of $\mathcal {M}$ that can be transferred to the end extensions that are guaranteed by Kaufmann’s theorem. Using admissible covers and the Barwise Compactness theorem, we show that if $\mathcal {M}$ is a countable model $\mathsf {KP}+\Pi _n\textsf {-Collection}+\Sigma _{n+1}\textsf {-Foundation}$ and T is a recursive theory that holds in $\mathcal {M}$, then there exists a proper $\Sigma _n$-elementary end extension of $\mathcal {M}$ that satisfies T. We use this result to show that the theory $\mathsf {M}+\Pi _n\textsf {-Collection}+\Pi _{n+1}\textsf {-Foundation}$ proves $\Sigma _{n+1}\textsf {-Separation}$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Barwise, K. J., Admissible sets over models of set theory , Generalized Recursion Theory: Proceedings of the 1972 Oslo Symposium (Fenstad, J. F. and Hinman, P. G., editors), North-Holland, Amsterdam, 1974.Google Scholar
Barwise, K. J., Admissible Sets and Structures, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1975.10.1007/978-3-662-11035-5CrossRefGoogle Scholar
Chang, C. C. and Keisler, H. J., Model Theory, third ed., Studies in Logic and the Foundations of Mathematics, 73, Elsevier, Amsterdam, 1990.Google Scholar
Clote, P., Partition relations in arithmetic , Methods in Mathematical Logic (Caracas, 1983) (Di Prisco, C. A., editor), Lecture Notes in Mathematics, 1130, Springer-Verlag, Berlin, 1985, pp. 3268.10.1007/BFb0075306CrossRefGoogle Scholar
Enayat, A. and McKenzie, Z., End extending models of set theory via power admissible covers . Annals of Pure and Applied Logic, vol. 173 (2022), no. 8, pp. 103132.Google Scholar
Friedman, H. M., Countable models of set theories , Cambridge Summer School in Mathematical Logic, August 1–21, 1971 (Mathias, A. R. D. and Rogers, H. Jr., editors), Springer Lecture Notes in Mathematics, 337, Springer, Berlin, 1973, pp. 539573.Google Scholar
Friedman, S.-D., Li, W., and Wong, T. L., Fragments of Kripke-Platek set theory and the metamathematics of $\alpha$ -recursion theory . Archive for Mathematical Logic, vol. 55 (2016), no. 7, pp. 899924.10.1007/s00153-016-0501-zCrossRefGoogle Scholar
Gostanian, R., Constructible models of subsystems of ZF . The Journal of Symbolic Logic, vol. 45 (1980), no. 2, pp 237250.10.2307/2273185CrossRefGoogle Scholar
Kaufmann, M., On existence of ${\varSigma}_n$ end extensions , Logic Year 1979–80, The University of Connecticut, (M. Lerman, J. H. Schmerl, and R. I. Soare, editors), Lecture Notes in Mathmeatics, 859, Springer-Verlag, Berlin, Heidelberg, 1981, pp. 92103.10.1007/BFb0090942CrossRefGoogle Scholar
Keisler, H. J. and Morley, M., Elementary extensions of models of set theory . Israel Journal of Mathematics, vol. 5 (1968), pp. 4965.10.1007/BF02771605CrossRefGoogle Scholar
McKenzie, Z., Automorphisms of models of set theory and extensions of NFU . Annals of Pure and Applied Logic, vol. 166 (2015), pp. 601638.10.1016/j.apal.2014.12.002CrossRefGoogle Scholar
McKenzie, Z., On the relative strengths of fragments of collection . Mathematical Logic Quarterly, vol. 65 (2019), no. 1, pp. 8094.10.1002/malq.201800044CrossRefGoogle Scholar
Mathias, A. R. D., The strength of Mac Lane set theory . Annals of Pure and Applied Logic, vol. 110 (2001), pp. 107234.10.1016/S0168-0072(00)00031-2CrossRefGoogle Scholar
Rathjen, M., A proof-theoretic characterization of the primitive recursive set functions . The Journal of Symbolic Logic, vol. 57 (1992), no. 3, pp. 954969.10.2307/2275441CrossRefGoogle Scholar
Ressayre, J.-P., Modèles non standard et sous-systèmes remarquables de ZF , Modèles Non Standard en Arithmétique et Théorie des Ensembles, Volume 22 of Publications Mathématiques de l’Université Paris VII, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1987, pp. 47147.Google Scholar
Sun, M., The Kaufmann-Clote question on end extensions and the weak regularity principle, preprint, Available online arXiv: 2409.03527 [math.LO]. Last accessed 24/ii/2025.10.1017/jsl.2025.15CrossRefGoogle Scholar
Takahashi, M., ${\overset{\sim }{\varDelta}}_1$ -definability in set theory , Conference in Mathematical Logic—London ’70 (Hodges, W., editor), Springer Lecture Notes in Mathematics, 255, Springer, Berlin, Heidelberg, 1972, pp. 281304.10.1007/BFb0059549CrossRefGoogle Scholar