Hostname: page-component-5d59c44645-k78ct Total loading time: 0 Render date: 2024-02-28T06:45:33.342Z Has data issue: false hasContentIssue false

A Sacks real out of nowhere

Published online by Cambridge University Press:  12 March 2014

Jakob Kellner
Affiliation:
Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Straße 25, 1090 Wien, Austria, E-mail: kellner@fsmat.at, URL: http://www.logic.univie.ac.at/~kellner
Saharon Shelah
Affiliation:
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA, E-mail: shelah@math.huji.ac.il, URL: http://www.math.rutgers.edu/~shelah

Abstract

There is a proper countable support iteration of length ω adding no new reals at finite stages and adding a Sacks real in the limit.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bartoszyński, Tomek and Judah, Haim, Set theory: On the structure of the real line, A K Peters Ltd., Wellesley, MA, 1995.Google Scholar
[2] Ciesielski, Krzysztof and Pawlikowski, Janusz, The covering property axiom, CPA: A combinatorial core of the iterated perfect set model, Cambridge Tracts in Mathematics, vol. 164, Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
[3] Devlin, Keith J. and Johnsbráten, Hávard, The Souslin problem, Springer-Verlag, Berlin, 1974, Lecture Notes in Mathematics, Vol. 405.Google Scholar
[4] Goldstern, Martin, Tools for your forcing construction, Set theory of the reals (Ramat Gan, 1991), Israel Mathematics Conference Proceedings, vol. 6, Bar-Ilan University, Ramat Gan, 1993, pp. 305360.Google Scholar
[5] Goldstern, Martin and Kellner, Jakob, New reals: can live with them, can live without them, Mathematical Logic Quarterly, vol. 52 (2006), no. 2, pp. 115124.Google Scholar
[6] Shelah, Saharon, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.Google Scholar
[7] Shelah, Saharon, Proper and improper forcing, second ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998.Google Scholar
[8] Solovay, R. M. and Tennenbaum, S., Iterated Cohen extensions and Souslin's problem, Annals of Mathematics. Second Series, vol. 94 (1971), pp. 201245.Google Scholar
[9] Zapletal, Jindřich, Forcing idealized, Cambridge Tracts in Mathematics, vol. 174, Cambridge University Press, Cambridge, 2008.Google Scholar