Skip to main content Accessibility help
×
Home
Hostname: page-component-cbbd94bb4-xqfw8 Total loading time: 0.266 Render date: 2021-02-23T11:11:01.195Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Similar but not the same: various versions of ♣ do not coincide

Published online by Cambridge University Press:  12 March 2014

Mirna Džamonja
Affiliation:
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK, E-mail: M.Dzamonja@uea.ac.uk
Saharon Shelah
Affiliation:
Mathematics Department, Hebrew University of Jerusalem, 91904 Givat Ram, Israel, E-mail: shelah@sunset.huji.ac.il
Corresponding

Abstract

We consider various versions of the ♣ principle. This principle is a known consequence of ◊. It is well known that ◊ is not sensitive to minor changes in its definition, e.g., changing the guessing requirement form “guessing exactly” to “guessing modulo a finite set”. We show however, that this is not true for ♣. We consider some other variants of ♣ as well.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Abraham, U., Rubin, M., and Shelah, S., On the consistency of some partition theorems for continuous colorings, and the structure of ℵ1-dense real order types, Annals of Pure and Applied Logic, vol. 29 (1985), pp. 123–206.CrossRefGoogle Scholar
[2]Fuchino, S., Shelah, S., and Soukup, L., Sticks and clubs, preprint.Google Scholar
[3]Jensen, R. B., The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308.CrossRefGoogle Scholar
[4]Juhász, I., A weakening of ♣, with applications to topology, Commentationes Mathematicae Universitae Carolinae, vol. 29 (1988), no. 4, pp. 767–773.Google Scholar
[5]Komjáth, P., Set systems with finite chromatic number, European Journal of Combinatorics, vol. 10 (1989), pp. 543–549.CrossRefGoogle Scholar
[6]Kunen, K., Set theory, an introduction to independence proofs, North-Holland, Amsterdam, 1980.Google Scholar
[7]Ostaszewski, A. J., On countably compact perfectly normal spaces, Journal of London Mathematical Society, vol. 2 (1975), no. 14, pp. 505–516.Google Scholar
[8]Rajagopalan, M., Compact C-spaces and S-spaces, General topology and its relations to modern analysis and algebra IV, Proceedings of the fourth Prague topological symposium, 1976, Part A: Invited papers (Novák, J., editor), Lecture Notes in Mathematics, vol. 609, Springer-Verlag, 1977, pp. 179–189.Google Scholar
[9]Shelah, S., Proper and improper forcing, Perspectives in Mathematical Logic, Springer-Verlag, accepted.Google Scholar
[10]Shelah, S., Whitehead groups may not be free, even assuming CH, II, Israel Journal of Mathematics, vol. 35 (1980), pp. 257–285.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Similar but not the same: various versions of ♣ do not coincide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Similar but not the same: various versions of ♣ do not coincide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Similar but not the same: various versions of ♣ do not coincide
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *