Skip to main content Accessibility help
×
Home

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS

Published online by Cambridge University Press:  01 May 2018

LINDA BROWN WESTRICK
Affiliation:
DEPARTMENT OF MATHEMATICS UNIVERSITY OF CONNECTICUT STORRS, CT, USA E-mail: westrick@uconn.edu
Corresponding
E-mail address:

Abstract

Let ${\cal S}$ be a Scott set, or even an ω-model of WWKL. Then for each A ε S, either there is X ε S that is weakly 2-random relative to A, or there is X ε S that is 1-generic relative to A. It follows that if A1,…,An ε S are noncomputable, there is X ε S such that each Ai is Turing incomparable with X, answering a question of Kučera and Slaman. More generally, any ∀∃ sentence in the language of partial orders that holds in ${\cal D}$ also holds in ${{\cal D}^{\cal S}}$ , where ${{\cal D}^{\cal S}}$ is the partial order of Turing degrees of elements of ${\cal S}$ .

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Conidis, C. J., A measure-theoretic proof of Turing incomparability. Annals of Pure and Applied Logic, vol. 162 (2010), no. 1, pp. 8388.CrossRefGoogle Scholar
>Downey, R., Nies, A., Weber, R., and Yu, L., Lowness and ${\rm{\Pi }}_2^0$ nullsets, this Journal, vol. 71 (2006), no. 3, pp. 10441052.Downey,+R.,+Nies,+A.,+Weber,+R.,+and+Yu,+L.,+Lowness+and+${\rm{\Pi+}}_2^0$+nullsets,+this+Journal,+vol.+71+(2006),+no.+3,+pp.+1044–1052.>Google Scholar
Kučera, A. and Slaman, T. A., Turing incomparability in Scott sets. Proceedings of the American Mathematical Society, vol. 135 (2007), no. 11, pp. 37233731.CrossRefGoogle Scholar
>Lerman, M., Degrees of Unsolvability, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
>Li, W. and Slaman, T. A., Private communication.Li,+W.+and+Slaman,+T.+A.,+Private+communication.>Google Scholar
>Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 44 *
View data table for this chart

* Views captured on Cambridge Core between 01st May 2018 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-cjctk Total loading time: 0.182 Render date: 2021-01-17T07:48:03.470Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 06:52:55 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *