Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-89lq7 Total loading time: 0.809 Render date: 2022-06-26T18:56:26.828Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS

Published online by Cambridge University Press:  01 May 2018

LINDA BROWN WESTRICK*
Affiliation:
DEPARTMENT OF MATHEMATICS UNIVERSITY OF CONNECTICUT STORRS, CT, USAE-mail:westrick@uconn.edu

Abstract

Let ${\cal S}$ be a Scott set, or even an ω-model of WWKL. Then for each A ε S, either there is X ε S that is weakly 2-random relative to A, or there is X ε S that is 1-generic relative to A. It follows that if A1,…,An ε S are noncomputable, there is X ε S such that each Ai is Turing incomparable with X, answering a question of Kučera and Slaman. More generally, any ∀∃ sentence in the language of partial orders that holds in ${\cal D}$ also holds in ${{\cal D}^{\cal S}}$, where ${{\cal D}^{\cal S}}$ is the partial order of Turing degrees of elements of ${\cal S}$.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Conidis, C. J., A measure-theoretic proof of Turing incomparability. Annals of Pure and Applied Logic, vol. 162 (2010), no. 1, pp. 8388.CrossRefGoogle Scholar
>Downey, R., Nies, A., Weber, R., and Yu, L., Lowness and ${\rm{\Pi }}_2^0$ nullsets, this Journal, vol. 71 (2006), no. 3, pp. 10441052.Downey,+R.,+Nies,+A.,+Weber,+R.,+and+Yu,+L.,+Lowness+and+${\rm{\Pi+}}_2^0$+nullsets,+this+Journal,+vol.+71+(2006),+no.+3,+pp.+1044–1052.>Google Scholar
Kučera, A. and Slaman, T. A., Turing incomparability in Scott sets. Proceedings of the American Mathematical Society, vol. 135 (2007), no. 11, pp. 37233731.CrossRefGoogle Scholar
>Lerman, M., Degrees of Unsolvability, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
>Li, W. and Slaman, T. A., Private communication.Li,+W.+and+Slaman,+T.+A.,+Private+communication.>Google Scholar
>Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

WEAKLY 2-RANDOMS AND 1-GENERICS IN SCOTT SETS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *