Skip to main content Accessibility help
×
Home

ALGEBRAIC NEW FOUNDATIONS

  • PAUL K. GORBOW (a1)

Abstract

This paper consists in the formulation of a novel categorical set theory, MLCat, which is proved to be equiconsistent to New Foundations (NF), and which can be modulated to correspond to intuitionistic (denoted with an “I” on the left) or classical NF, with atoms (denoted with a “U” on the right) or not:

Copyright

References

Hide All
[1]Awodey, S., Butz, C., Simpson, A., and Streicher, T., Relating first-order set theories, toposes and categories of classes. Annals of Pure and Applied Logic, vol. 165 (2014), pp. 428502.10.1016/j.apal.2013.06.004
[2]Cantini, A., On stratified truth, Unifying the Philosophy of Truth (Achourioti, T., Galinon, H., Martínez Fernández, J., and Fujimoto, K., editors), Springer, Berlin, 2015, pp. 369389.10.1007/978-94-017-9673-6_19
[3]Cocchiarella, N., Freges double-correlation thesis and quines set theories NF and ML. Journal of Philosophical Logic, vol. 14 (1985), no. 1, pp. 139.10.1007/BF00542647
[4]Crabbé, M., On the set of atoms. Logic Journal of the IGPL, vol. 8 (2000), no. 6. pp. 751759.10.1093/jigpal/8.6.751
[5]Dzierzgowski, D., Models of intuitionistic TT and NF, this Journal, vol. 60 (1995), pp. 640653.
[6]Enayat, A., Automorphisms, mahlo cardinals, and NFU, Nonstandard Models of Arithmetic and Set Theory (Enayat, A. and Kossak, R., editors), Contemporary Mathematics, vol. 361, American Mathematical Society, Providence, RI, 2004, pp. 3759.10.1090/conm/361/06587
[7]Enayat, A., Gorbow, P., and McKenzie, Z., Feferman’s forays into the foundations of category theory, Feferman on Foundations: Logic, Mathematics, Philosophy (Jäger, G. and Sieg, W., editors), Outstanding Contributions to Logic Series, Springer Verlag, Cham, pp. 315346.10.1007/978-3-319-63334-3_12
[8]Feferman, S., Enriched Stratified Systems for the Foundations of Category Theory . In What is category theory? Polimetrica (2006). Preprint on-line: http://math.stanford.edu/∼feferman/papers/ess.pdf.
[9]Forster, T., Set Theory with a Universal Set, second ed., Oxford University Press, Oxford, 1995.
[10]Forster, T., Lewicki, A., and Vidrine, A., The category of sets in stratifiable set theories, unpublished, 2014.
[11]Goldblatt, R., Topoi: The Categorical Analysis of Logic, Elsevier Science Publishers, Amsterdam, 2006.
[12]Hailperin, T., A set of axioms for logic, this Journal, vol. 9 (1994), pp. 119.
[13]Holmes, M. R., Elementary Set Theory with a Universal Set. Cahiers du Centre de logique, Vol. 10 (1998). Preprint of revised and corrected version on-line: http://math.boisestate.edu/~holmes/holmes/head.pdf.
[14]Holmes, M. R., Repairing Frege’s Logic . Online: https://math.boisestate.edu/~holmes/holmes/fregenote.pdf (2015).
[15]Jensen, R. B., On the consistency of a slight (?) modification of Quine’s NF. Synthese, vol. 19 (1969), pp. 250263.10.1007/BF00568059
[16]Johnstone, P. T., Sketches of an Elephant, Oxford University Press, Oxford, 2002.
[17]Joyal, A. and Moerdijk, I., A categorical theory of cumulative hierarchies of sets. Comptes Rendus Mathématiques de l’Académie des Science, vol. 13 (1991), pp. 5558.
[18]Joyal, A. and Moerdijk, I., Algebraic Set Theory, Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511752483
[19]Lawvere, F. W., Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences, vol. 50 (1963), no. 5. pp. 869872.10.1073/pnas.50.5.869
[20]McKenzie, Z., Automorphisms of models of set theory and extensions of NFU. Annals of Pure and Applied Logic, vol. 166 (2015), pp. 601638.10.1016/j.apal.2014.12.002
[21]McLarty, C., Failure of cartesian closedness in NF, this Journal, vol. 57 (1992), no. 2, pp. 555556.
[22]Moschovakis, J., Intuitionistic logic, The Stanford Encyclopedia of Philosophy (Spring 2015 edition) (Zalta, E. N., editor). Online: https://plato.stanford.edu/archives/spr2015/entries/logic-intuitionistic.
[23]Quine, W. V., New foundations for mathematical logic. American Mathematical Monthly, vol. 44 (1937), pp. 111115.10.1080/00029890.1937.11987928
[24]Quine, W. V., Mathematical logic, revised edition, Harvard University Press, Cambridge, MA, 1982.
[25]Specker, E. P., The axiom of choice in Quine’s ‘New Foundations for Mathematical Logic’. Proceedings of the National Academy of Sciences of the U. S. A., vol. 39 (1953), pp. 972975.10.1073/pnas.39.9.972
[26]Solovay, R., The consistency strength of NFUB, 1997, arXiv:math/9707207 [math.LO].
[27]Thomas, M., Approximating cartesian closed categories in NF-Style set theories. Journal of Philosophical Logic, vol. 47 (2017), no. 1, pp. 143160.10.1007/s10992-017-9425-2
[28]Wang, H., A formal system of logic, this Journal, vol. 15 (1950), no. 1, pp. 2532.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed