Skip to main content

An algebraic approach to intuitionistic connectives

  • Xavier Caicedo (a1) and Roberto Cignoli (a2)

It is shown that axiomatic extensions of intuitionistic propositional calculus defining univocally new connectives, including those proposed by Gabbay, are strongly complete with respect to valuations in Heyting algebras with additional operations. In all cases, the double negation of such a connective is equivalent to a formula of intuitionistic calculus. Thus, under the excluded third law it collapses to a classical formula, showing that this condition in Gabbay's definition is redundant. Moreover, such connectives can not be interpreted in all Heyting algebras, unless they are already equivalent to a formula of intuitionistic calculus. These facts relativize to connectives over intermediate logics. In particular, the intermediate logic with values in the chain of length n may be “completed” conservatively by adding a single unary connective, so that the expanded system does not allow further axiomatic extensions by new connectives.

Hide All
[1]Balbes R. and Dwinger R, Distributive lattices, University of Missouri Press, Columbia, Missouri. 1974.
[2]Caicedo X., Investigaciones acerca de los conectivos intuicionistas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 19 (1995), pp. 705716.
[3]Caicedo X., Conectivos sobre espacios topológicos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 21 (1997), pp. 521534.
[4]Fitting M. C., Intuitionistic logic, model theory, andforcing. North-Holland. Amsterdam, 1969.
[5]Freyd P.. Aspects of topoi. Bulletin of the Australian Mathematical Society. vol. 7 (1972), pp. 176.
[6]Gabbay D. M.. On some new intuitionistic propositional connectives, I, Studia Lógica, vol. 36 (1977), pp. 127139.
[7]Gabbay D. M.. Semantical investigations in Heyting intuitionistic logic, Reidel Publishing Company. Dordrecht, 1981.
[8]Goldblatt R., Topoi, the categorical analysis of logic. North Holland. Amsterdam, 1984.
[9]Gratzer G., On boolean functions, (Notes on lattice theory II), Revue Roumaine de Mathématiques Purés et Appliquées, vol. 7, 1962, pp. 693697.
[10]Hecht T. and Katrinák T.. Equational classes of relative Stone algebras. Notre Dame Journal of Formal Logic, vol. 13 (1972), pp. 248254.
[11]Kaarly K. and Pixley A. F.. Affine complete varieties. Algebra Universalis, vol. 24 (1987), pp. 7490.
[12]Kaarly K. and Pixley A. F., Polynomial completeness in algebraic systems, Chapman and Hall, Boca Ratón, 2000.
[13]Kaminski M., Nonstandard connectives of intuitionistic propositional logic, Notre Dame Journal of Formal Logic, vol. 29 (1988). pp. 309331.
[14]Monteiro L., Algebre du calculpropositionnel trivalent de Heyting. Fundamenta Mathematicae. vol. 74(1972), pp, 99109.
[15]Pixley A., Completeness in arithmetical algebras. Algebra Universalis, vol. 2 (1972), pp. 179196.
[16]Rasiowa H., An algebraic approach to non-classical logics. North Holland, Amsterdam. 1974.
[17]Rasiowa H. and Sikorski R., The mathematics of metamathematics. Polish Scientific Publishers, Warsaw. 1963, Third edition. 1970.
[18]Reyes G. E. and Zolfaghari H., Bi-Heyting Algebras, topos and modalities. Journal of Philosophical Logic, vol. 25 (1996), pp. 2543.
[19]Thomas I., Finite limitations on Dummett's LC. Notre Dame Journal of Formal Logic, vol. 3 (1962), pp. 170174.
[20]Touraille A., The word problem for Heyting* algebras. Algebra Universalis, vol. 24 (1987). pp. 120127.
[21]Yashin A. D.. New solutions to Novikov's problem for intuitionistic connectives. Journal of Logic and Computation, vol. 8 (1998), pp. 637664.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 12th December 2017. This data will be updated every 24 hours.