[1]Abraham, Uri, *Proper forcing*, Handbook of set theory. Springer, Dordrecht, 2010, pp. 333–394.

[2]Becker, Howard, *Inner model operators and the continuum hypothesis*. Proceedings of the American Mathematical Society, vol. 96 (1986), no. 1, pp. 126–129.

[3]Cramer, Scott Stefan, *Inverse limit reflection and the structure of L*(*V* _{λ+1}), *Ph.D. thesis*, University of California, Berkeley, 2012.

[4]Devlin, Keith J., Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984.

[5]Dimonte, Vincenzo and Friedman, Sy-David, *Rank-into-rank hypotheses and the failure of GCH*, Archive for Mathematical Logic, vol. 53 (2014), no. 3-4, pp. 351–366.

[6]Dodd, A. J. and Jensen, R. B., *The covering lemma for L*[*U*]. Annals of Mathematical Logic, vol. 22 (1982), no. 2, pp. 127–135.

[7]Dodd, Tony and Jensen, Ronald, *The covering lemma for K. Annals of Mathematical Logic*, vol. 22 (1982), no. 1, pp. 1–30.

[8]Friedman, Sy D., *Negative solutions to Post’s problem*. I, Generalized recursion theory, II (Proceedings of Second Symposium, University of Oslo, Oslo, 1977), Studies in Logic and the Foundations of Mathematics, vol. 94, North-Holland, Amsterdam, 1978, pp. 127–133.

[9]Friedman, Sy D., *Negative solutions to Post’s problem. II*. Annals of Mathematical Logic, vol. 113 (1981), no. 1, pp. 25–43.

[10]Gaifman, Haim, *Elementary embeddings of models of set-theory and certain subtheories*, Axiomatic set theory (Proceedings of Symposia in Pure Mathematics, Vol. XIII, Part II, Univesity of California, Los Angeles, California, 1967), American Mathematical Society, Providence R.I., 1974, pp. 33–101.

[11]Gitik, Moti, *The negation of the singular cardinal hypothesis from o*(*κ*) = *κ* ^{++}. Annals of Pure and Applied Logic, vol. 43 (1989), no. 3, pp. 209–234.

[12]Gitik, Moti, *Prikry-type forcings*, Handbook of set theory. Springer, Dordrecht, 2010, pp. 1351–1447.

[13]Hamkins, Joel David, *Small forcing makes any cardinal superdestructible*, this Journal, vol. 63 (1998), no. 1, pp. 51–58.

[14]Harrison, Joseph, *Recursive pseudo-well-orderings*. Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526–543.

[15]Jech, Thomas, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[17]Kanamori, Akihiro, The higher infinite, Second edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[18]Kechris, Alexander S., Kleinberg, Eugene M., Moschovakis, Yiannis N., and Woodin, W. Hugh, *The axiom of determinacy, strong partition properties and nonsingular measures*, Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79), Lecture Notes in Mathematics, vol. 839, Springer, Berlin, 1981, pp. 75–99.

[19]Kleinberg, Eugene M., Infinitary combinatorics and the axiom of determinateness, Lecture Notes in Mathematics, Vol. 612, Springer-Verlag, Berlin, 1977.

[20]Kunen, Kenneth, *Elementary embeddings and infinitary combinatorics*, this Journal, vol. 36 (1971), pp. 407–413.

[21]Laver, Richard, *Making the supercompactness of κ indestructible under κ-directed closed forcing*. Israel Journal of Mathematics, vol. 29 (1978), no. 4, pp. 385–388.

[22]Laver, Richard, *The left distributive law and the freeness of an algebra of elementary embeddings*. Advances in Mathematics, vol. 91 (1992), no. 2, pp. 209–231.

[23]Laver, Richard, *A division algorithm for the free left distributive algebra*, Logic Colloquium ’90 (Helsinki, 1990), Lecture Notes Logic, vol. 2, Springer, Berlin, 1993, pp. 155–162.

[24]Laver, Richard, *On the algebra of elementary embeddings of a rank into itself*. Advances in Mathematics, vol. 110 (1995), no. 2, pp. 334–346.

[25]Laver, Richard, *Braid group actions on left distributive structures, and well orderings in the braid groups*. Journal of Pure and Applied Algebra, vol. 108 (1996), no. 1, pp. 81–98.

[26]Laver, Richard, *Implications between strong large cardinal axioms*. Annals of Pure and Applied Logic, vol. 90 (1997), no. 1–3, pp. 79–90.

[27]Laver, Richard, *Reflection of elementary embedding axioms on the L*[*V* _{λ+1}] *hierarchy*. Annals of Pure and Applied Logic, vol. 107 (2001), no. 1–3, pp. 227–238.

[28]Laver, Richard, *On very large cardinals*, Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Society Mathematical Studies, vol. 11, János Bolyai Mathematical Society, Budapest, 2002, pp. 453–469.

[29]Mitchell, W. J., *On the singular cardinal hypothesis*. Transactions of the American Mathematical Society, vol. 329 (1992), no. 2, pp. 507–530.

[30]Mitchell, William J., *The covering lemma*, Handbook of set theory. Springer, Dordrecht, 2010, pp. 1497–1594.

[31]Neeman, Itay, *Inner models in the region of a Woodin limit of Woodin cardinals*. Annals of Pure and Applied Logic, vol. 116 (2002), no. 1–3, pp. 67–155.

[32]Posner, David B. and Robinson, Robert W., *Degrees joining to* , this Journal, vol. 46 (1981), no. 4, pp. 714–722.

[33]Sacks, Gerald E., Higher recursion theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990.

[34]Sacks, Gerald E. and Slaman, Theodore A., *Generalized hyperarithmetic theory*. Proceedings of the London Mathematical Society, vol. 60 (1990), no. 3, pp. 417–443.

[35]Sami, Ramez L., *Turing determinacy and the continuum hypothesis*. Archive for Mathematical Logic, vol. 28 (1989), no. 3, pp. 149–154.

[36]Sargsyan, Grigor, *Descriptive inner model theory*. Bulletin of Symbolic Logic, vol. 19 (2013), no. 1, pp. 1–55.

[37]Schimmerling, Ernest, *The ABC’s of mice*. Bulletin of Symbolic Logic, vol. 7 (2001), no. 4, pp. 485–503.

[38]Shelah, Saharon, *PCF without choice*, ArXiv e-prints, (2010), [Sh:835]. arXiv:math/0510229.

[39]Shi, Xianghui and Trang, Nam Duc, *I* _{0}*and combinatorics at* λ^{+}, preprint, 20 pages, 2014.

[40]Shore, Richard A. and Slaman, Theodore A., *Defining the Turing jump*. Mathematical Research Letter, vol. 6 (1999), no. 5–6, pp. 711–722.

[41]Slaman, Theodore A. and Steel, John R., *Definable functions on degrees*, Cabal Seminar 81–85, Lecture Notes in Mathematics, vol. 1333, Springer, Berlin, 1988, pp. 37–55.

[42]Slaman, Theodore A., *Complementation in the Turing degrees*, this Journal, vol. 54 (1989), no. 1, pp. 160–176.

[43]Solovay, Robert, *Woodin’s proof on sharps*, handwritten notes, 1981.

[44]Solovay, Robert M., Reinhardt, William N., and Kanamori, Akihiro, *Strong axioms of infinity and elementary embeddings*. Annals of Mathematical Logic, vol. 13 (1978), no. 1, pp. 73–116.

[45]Steel, John R., HOD^{L(R)}*is a core model below* Θ. Bulletin of Symbolic Logic, vol. 1 (1995), no. 1, pp. 75–84.

[46]Woodin, W. Hugh, *Some consistency results in ZFC using* AD, Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer, Berlin, 1983, pp. 172–198.

[47]Woodin, W. Hugh, *Notes on an AD-like axiom*, July 6 1990. Seminar notes taken by George Kafkoulis.

[48]Woodin, W. Hugh, *Suitable extender models I*. Journal of Mathematical Logic, vol. 10 (2010), no. 1–2, pp. 101–339.

[49]Woodin, W. Hugh, *Suitable extender models II: beyond ω-huge*. Journal of Mathematical Logic, vol. 11 (2011), no. 2, pp. 115–436.

[50]Woodin, W. Hugh, The fine structure of suitable extender models I, 2014.

[51]Yang, Sen, *Prikry-type forcing and minimal α-degree*. ArXiv e-prints, (2013). arXiv:1310.0891.