[1]
Chang, C.C. and Keisler, J.H., Model theory, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland, 1990.
[2]
Deiser, O., Commutativity in the core model theory MO, submitted.
[3]
Deiser, O., Untersuchungen über das Kernmodell für Maße der Ordnung Null, 1999, Dissertation an der Ludwig-Maximilians-Universität München, Munich.
[4]
Donder, H.-D., Families of almost disjoint functions, Contemporary Mathematics, vol. 31 (1984), pp. 71–78.
[5]
Donder, H.-D., On ω
_{1}-complete filters, Logic Colloquium '90 (Helsinki 1990), Lecture Notes in Logic, vol. 2, Springer, Berlin, 1993, pp. 62–65.
[6]
Donder, H.-D., Jensen, R.B., and Koppelberg, B., Some applications of the core model, Set theory and model theory, Proceedings, Bonn 1979, Lecture Notes in Mathematics, vol. 872, Springer, Berlin, 1979, pp. 55–97.
[7]
Donder, H.-D. and Koepke, P., On the consistency strength of ‘accessible’ Jonsson cardinals and of the weak Chang conjecture, Annals of Pure and Applied Logic, vol. 25 (1983), pp. 233–261.
[8]
Donder, H.-D. and Levinski, J.-P., Some principles related to Chang's conjecture, Annals of Pure and Applied Logic, vol. 109 (1989), pp. 39–101.
[9]
Gitik, M. and Shelah, S., Forcing with ideals and simple forcing notions, Israel Journal of Mathematics, vol. 68 (1989), pp. 129–160.
[10]
Jensen, R.B., Measures of order zero, handwritten notes, 1989.
[11]
Gitik, M. and Shelah, S., Innere Modelle and große Kardinalzahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung Jubiläumstagung, 100 Jahre DMV (Bremen, 1990), B.G. Teuber, Stuttgart, 1992, pp. 265–281.
[12]
Kanamori, A., Weakly normal filters and irregular ultrafilters, Transactions of the American Mathematical Society, vol. 220 (1976), pp. 393–399.
[13]
Kanamori, A., The higher infinite. Perspectives in Mathematical Logic, Springer, Berlin, 1994.
[14]
Ketonen, J., Non-regular ultrafilters and large cardinals. Transactions of the American Mathematical Society, vol. 224 (1976), pp. 61–73.
[15]
Larson, P. and Shelah, S., Bounding by canonical functions, with CH, to appear.
[16]
Shelah, S., Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer, Berlin, 1998.
[17]
Taylor, A.D., Regularity properties of ideals and ultrafilters. Annals of Mathematical Logic, vol. 16 (1979), pp. 33–55.
[18]
Taylor, A.D., On saturated sets of ideals and Ulam's problem, Fundamentae Mathematica, vol. 49 (1980), pp. 37–53.
[19]
Woodin, W.H., Large cardinal axioms and independence: The continuum problem revisited, The Mathematical Intelligencer, vol. 16 (1994), no. 3, pp. 31–35.
[20]
Woodin, W.H., The axiom of determinacy, forcing axioms, and the nonstationary ideal, de Gruyter Series in Logic and Its Applications, vol. 1, Walter de Gruyter, Berlin, 1999.
[21]
Zeman, M., Inner models and large cardinals, de Gruyter Series in Logic and Its Applications, vol. 5, Walter de Gruyter, Berlin, 2002.